[1]高焱,熊风光.基于深度学习的点云目标检测方法[J].计算机技术与发展,2022,32(03):76-83.[doi:10. 3969 / j. issn. 1673-629X. 2022. 03. 013]
 GAO Yan,XIONG Feng-guang.3D Point Cloud Detection Based on Deep Learning Network[J].,2022,32(03):76-83.[doi:10. 3969 / j. issn. 1673-629X. 2022. 03. 013]
点击复制

基于深度学习的点云目标检测方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
32
期数:
2022年03期
页码:
76-83
栏目:
图形与图像
出版日期:
2022-03-10

文章信息/Info

Title:
3D Point Cloud Detection Based on Deep Learning Network
文章编号:
1673-629X(2022)03-0076-08
作者:
高焱熊风光
中北大学 大数据学院,山西 太原 030051
Author(s):
GAO YanXIONG Feng-guang
School of Big Data,North University of China,Taiyuan 030051,China
关键词:
点云检测三维点云检测框架三维视觉机理自动驾驶点云数据集
Keywords:
point clouddetection3D point cloud detection frameworkthree-dimensional visual mechanismdataset of automatic driving
分类号:
TP391. 41
DOI:
10. 3969 / j. issn. 1673-629X. 2022. 03. 013
摘要:
随着自动驾驶技术和点云处理技术的不断发展,如何对点云数据中的点的相关特征进行分析就成为关键问题。针对点云特征分析问题,很多的文献中对点云特征值采取手动输入的方法。 然而,该类方法无法适应实际环境中复杂多变的情况。 为了解决该问题,该文提出了一种新的基于深度学习网络的三维点云检测框架。 该框架以深度学习作为点云分析工具,并引入三维视觉机理,在点云分析时网络会通过已有数据集的训练自动寻找需要注意的点云区域,从而极大地减少了计算成本。 在测试时,采用自动驾驶点云数据集对网络进行应用。 实验结果表明,与其他三维点云物体检测方法相比,基于深度学习网络的三维点云检测方法能够在对硬件环境要求较低的情况下实现良好的运行效果。
Abstract:
With the continuous development of automatic driving technology and point cloud processing technology,how to analyze the relevant characteristics of points in point cloud data has become an essential issue. For the problem of point cloud feature analysis,the hand-crafted method for features of point cloud is adopted in many literatures, which cannot adapt to the complex and change able situation in the actual environment. In order to solve this problem, we propose a new 3D point cloud detection framework based on deep learning network. The framework uses deep learning as a tool for point cloud analysis, and introduces three - dimensional visual mechanism. During point cloud analysis, the network will automatically find the point cloud fields which need attention through the training of existing datasets,which reduces the computational cost greatly. During the test,we use the point cloud dataset of automatic driving applied to the network. The experimental results show that compared with other 3D point cloud object detection methods,the proposed 3D point cloud detection method based on deep learning network can achieve good performance under the condition of low hardware requirements.

相似文献/References:

[1]赵越超 李忠科 王勇 吕培军.基于OpenGL的三维牙颌模型可视化研究[J].计算机技术与发展,2008,(01):119.
 ZHAO Yue-chao,LI Zhong-ke,WANG Yong,et al.Research of 3D Dental Visualization Based on OpenGL[J].,2008,(03):119.
[2]蒋恩松 肖辉军 孙刘杰 熊清廉.基于机器视觉的套印误差自动检测系统设计[J].计算机技术与发展,2008,(07):173.
 JIANG En-song,XIAO Hui-jun,SUN Liu-jie,et al.Design of Automatic Detecting Printing Registration Deviation System Based on Machine Vision[J].,2008,(03):173.
[3]陈磊 张家栋 霍凯.列车振动检测记录仪的研制[J].计算机技术与发展,2007,(02):181.
 CHEN Lei,ZHANG Jia-dong,HUO Kai.Research of Vibration Detecting Recorder for Running Vehicles[J].,2007,(03):181.
[4]邢长明 刘方爱 杨林.无线局域网中非法设备检测方案的设计与实现[J].计算机技术与发展,2006,(10):128.
 XING Chang-ming,LIU Fang-ai,YANG Lin.A Design and Realization of a Rogue - Device Detecting Project in WLAN[J].,2006,(03):128.
[5]屠长涛 唐原广.SZF型波浪浮标中波高数字化检测系统设计[J].计算机技术与发展,2011,(06):12.
 TU Chang-tao,TANG Yuan-guang.Design on Digital Wave Height Detection System of SZF Type Wave Buoy[J].,2011,(03):12.
[6]张琴 蔡勇.支持向量学习机在点云去噪中的应用[J].计算机技术与发展,2011,(06):85.
 ZHANG Qin,CAI Yong.Application of Support Vector Machine in Point Clouds Denoising[J].,2011,(03):85.
[7]周春艳 李勇 邹峥嵘.三维点云ICP算法改进研究[J].计算机技术与发展,2011,(08):75.
 ZHOU Chun-yan,LI Yong,ZOU Zheng-rong.Three-Dimensional Cloud ICP Algorithm Improvement[J].,2011,(03):75.
[8]孙科学 汤吉波 史学良.基于NiosⅡ的高性能电网谐波表的研制[J].计算机技术与发展,2012,(07):219.
 SUN Ke-xue,TANG Ji-bo,SHI Xue-liang.High-performance Electrical Network Harmonic Monitoring System Based on Nios Ⅱ[J].,2012,(03):219.
[9]朱俚治.病毒检测技术的研究与0.5级环[J].计算机技术与发展,2012,(09):225.
 ZHU Li-zhi.Research on Detecting Virus and 0.5 Level Ring[J].,2012,(03):225.
[10]韩玲,蔡皖东.面向Microsoft Virtual PC的虚拟机远程检测方法[J].计算机技术与发展,2013,(12):134.
 HAN Ling,CAI Wan-dong.Remote Detection Method Oriented Microsoft Virtual PC[J].,2013,(03):134.

更新日期/Last Update: 2022-03-10