[1]文必龙,薛广有.面向油藏地质领域的知识图谱构建研究[J].计算机技术与发展,2021,31(12):204-210.[doi:10. 3969 / j. issn. 1673-629X. 2021. 12. 034]
 WEN Bi-long,XUE Guang-you.Research on Knowledge Graph Construction in Reservoir Geology[J].,2021,31(12):204-210.[doi:10. 3969 / j. issn. 1673-629X. 2021. 12. 034]
点击复制

面向油藏地质领域的知识图谱构建研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
31
期数:
2021年12期
页码:
204-210
栏目:
应用前沿与综合
出版日期:
2021-12-10

文章信息/Info

Title:
Research on Knowledge Graph Construction in Reservoir Geology
文章编号:
1673-629X(2021)12-0204-07
作者:
文必龙薛广有
东北石油大学 计算机与信息技术学院,黑龙江 大庆 163318
Author(s):
WEN Bi-longXUE Guang-you
School of Computer and Information Technology,Northeast Petroleum University,Daqing 163318,China
关键词:
油藏地质领域领域本体知识图谱循环神经网络实体对齐属性值融合
Keywords:
reservoir geologydomain ontologyknowledge graphrecurrent neural networkentity alignmentattribute value fusion
分类号:
TP391
DOI:
10. 3969 / j. issn. 1673-629X. 2021. 12. 034
摘要:
经过多年的地质勘探,油藏地质领域积累了丰富的勘探成果以及地质知识。 为了实现油藏地质领域知识的共享、传播及对知识进行有效的管理,油藏地质领域知识图谱成为了一种必然的选择。 针对目前油藏地质领域知识图谱在实际构建中存在的已有本体不能直接构建知识图谱的模式层,抽取得到的多个实体指称项对应于同一个事实对象,难以从抽取出的多个属性值中得到最优属性值等问题,通过对构建领域知识图谱的方法和技术的研究,该文提出了一种以领域内的业务活动为核心的领域本体构建方法,并且依据此方法构建了油藏地质领域本体。 改进了传统的孪生循环神经网络模型,解决了油藏地质领域实体对齐问题;针对不同类别的属性设计了不同的属性值融合方法,实现属性值的最优。
Abstract:
After years of geological exploration,rich exploration results and geological knowledge have been accumulated in the field of reservoir geology.? ?In order to realize the sharing,dissemination and effective management of knowledge in the field of reservoir geology,the knowledge map of reservoir geology has become an inevitable choice. At present,the existing ontology in the actual construction of reservoir geological knowledge map cannot directly construct the mode layer of knowledge map, and the extracted multiple entity references correspond to the same fact object, so it is difficult to get the optimal attribute value from the extracted multiple attribute values. The method and technology of domain knowledge mapping are studied,and a domain ontology construction method with business activities as the core is proposed to realize the construction of reservoir geology domain ontology. The traditional twin neural network model is improved to solve the problem of entity alignment in the field of reservoir geology. Different attribute value fusion methods are designed for different types of attributes to achieve the optimal attribute value.

相似文献/References:

[1]拜战胜 徐德智 彭佳红 陈光仪.基于主题本体的信息采集模型研究[J].计算机技术与发展,2009,(10):102.
 BAI Zhan-sheng,XU De-zhi,PENG Jia-hong,et al.Research of a Model of Web Information Acquisition Based on Topic-Ontology[J].,2009,(12):102.
[2]刘燕玲 华庆一 郭晓娟.基于领域本体面向问题的需求分析与领域建模[J].计算机技术与发展,2007,(08):99.
 LIU Yan-ling,HUA Qing-yi,GUO Xiao-juan.An Ontology - Based, Problem - Oriented Requirements Analysis and Domain Modeling Method[J].,2007,(12):99.
[3]陈坚 何洁月.RDF可信度扩展在领域本体构建中的应用[J].计算机技术与发展,2006,(01):120.
 CHEN Jian,FIE Jie-yue.A Credibility Extension to RDF and Its Application for Domain- Ontology Building[J].,2006,(12):120.
[4]陈立峰 宋金玉 石坚.军事通信领域本体构建与分析[J].计算机技术与发展,2011,(07):90.
 CHEN Li-feng,SONG Jin-yu,SHI Jian.Specific Ontology Building and Analysis on Military Communication Domain[J].,2011,(12):90.
[5]张晓孪 王西锋.基于本体和相似图的概念语义相似度计算[J].计算机技术与发展,2011,(08):101.
 ZHANG Xiao-luan,WANG Xi-feng.Concept Semantic Similarity Computation Based on Ontology and Similar Graph[J].,2011,(12):101.
[6]易利涛 周肆清 丁长松.信息抽取中领域本体建模方法研究[J].计算机技术与发展,2011,(10):23.
 YI Li-tao,ZHOU Si-qing,DING Chang-song.Research on Modeling Method of Domain Ontology in Information Extraction[J].,2011,(12):23.
[7]马斌,柴智.基于领域本体的方剂知识获取与研究[J].计算机技术与发展,2013,(06):227.
 MA Bin,CHAI Zhi.Chinese Medicine Prescription Knowledge Acquisition and Research Based on Domain Ontology[J].,2013,(12):227.
[8]林培金,曹苏燕,应捷.基于领域本体的语义合成研究[J].计算机技术与发展,2013,(07):44.
 LIN Pei-jin[],CAO Su-yan[],YING Jie[].Research on Semantic Synthesis Based on Domain Ontology[J].,2013,(12):44.
[9]兰富菊,赵志弘,韩永国.基于领域本体的主观题自动评阅算法的研究[J].计算机技术与发展,2014,24(06):166.
 LAN Fu-ju,ZHAO Zhi-hong,HAN Yong-guo.Research on Subjective Machine Marking Algorithm Based on Domain Ontology[J].,2014,24(12):166.
[10]张鑫 陈梅 王翰虎 王嫣然.基于视觉特征和领域本体的Web信息抽取[J].计算机技术与发展,2011,(02):58.
 ZHANG Xin,CHEN Mei,WANG Han-hu,et al.Visual Features and Domain Ontology-Based Web Information Extraction[J].,2011,(12):58.

更新日期/Last Update: 2021-12-10