相似文献/References:
[1]刘作志,刘欢,林耀海. 基于极限学习机的图像压缩算法[J].计算机技术与发展,2015,25(05):13.
LIU Zuo-zhi,LIU Huan,LIN Yao-hai. Image Compression Algorithm Based on Extreme Learning Machine[J].,2015,25(11):13.
[2]梅朵[],郑黎黎[],刘春晓[],等. 基于混合算法优化SVM的短时交通流预测[J].计算机技术与发展,2017,27(11):92.
MEI Duo[],ZHENG Li-li[],LIU Chun-xiao[],et al. A Short-term Traffic Flow Prediction Model Based on Support Vector Machine Optimized by Hybrid Algorithm[J].,2017,27(11):92.
[3]邓万宇,张 倩,屈玉涛.基于ELM-AE 的二进制非线性哈希算法[J].计算机技术与发展,2017,27(12):61.[doi:10.3969/ j. issn.1673-629X.2017.12.014]
DENG Wan-yu,ZHANG Qian,QU Yu-tao.A Binary Nonlinear Hashing Algorithm with ELM Auto-encoders[J].,2017,27(11):61.[doi:10.3969/ j. issn.1673-629X.2017.12.014]
[4]佘雅莉,周 良.基于改进在线序列学习机的危险源识别算法[J].计算机技术与发展,2018,28(09):72.[doi:10.3969/ j. issn.1673-629X.2018.09.016]
SHE Ya-li,ZHOU Liang.Hazard Identification Algorithm Based on Improved Online Sequential Extreme Learning Machine[J].,2018,28(11):72.[doi:10.3969/ j. issn.1673-629X.2018.09.016]
[5]朱小明.基于多光谱遥感图像信息的水质污染监测研究[J].计算机技术与发展,2018,28(11):52.[doi:10.3969/ j. issn.1673-629X.2018.11.012]
ZHU Xiao-ming.Research on Water Quality Monitoring Based on Multi-spectral Remote Sensing Imagery[J].,2018,28(11):52.[doi:10.3969/ j. issn.1673-629X.2018.11.012]
[6]刘俊杰,张昕,杨乐,等.基于 DELM 的不确定数据流分类算法[J].计算机技术与发展,2019,29(03):101.[doi:10.3969/ j. issn.1673-629X.2019.03.022]
LIU Jun-jie,ZHANG Xin,YANG Le,et al.An Uncertain Data Stream Classification Algorithm Based on Distributed Extreme Learning Machine[J].,2019,29(11):101.[doi:10.3969/ j. issn.1673-629X.2019.03.022]
[7]许二戗,于化龙.基于粒子群的多标记阈值自适应极限学习机[J].计算机技术与发展,2019,29(04):47.[doi:10. 3969 / j. issn. 1673-629X. 2019. 04. 010]
XU Er-qiang,YU Hua-long.An Extreme Learning Machine of Multi-label Threshold Adaptation Based on Particle Swarm Optimization[J].,2019,29(11):47.[doi:10. 3969 / j. issn. 1673-629X. 2019. 04. 010]
[8]李佩钰.一种基于小波和神经网络的短时交通流量预测[J].计算机技术与发展,2020,30(01):135.[doi:10. 3969 / j. issn. 1673-629X. 2020. 01. 024]
LI Pei-yu.Short-term Traffic Flow Prediction Based on Wavelet and Neural Network[J].,2020,30(11):135.[doi:10. 3969 / j. issn. 1673-629X. 2020. 01. 024]
[9]陆子豪,荆晓远.基于改进 SMOTE 的半监督极限学习机缺陷预测[J].计算机技术与发展,2021,31(12):21.[doi:10. 3969 / j. issn. 1673-629X. 2021. 12. 004]
LU Zi-hao,JING Xiao-yuan.Semi-supervised Extreme Learning Machine Based on Improved SMOTE for Software Defect Prediction[J].,2021,31(11):21.[doi:10. 3969 / j. issn. 1673-629X. 2021. 12. 004]
[10]丁胜夺,谭 昆,田 琨,等.基于自适应遗传算法的极限学习机改进算法[J].计算机技术与发展,2022,32(S1):26.[doi:10. 3969 / j. issn. 1673-629X. 2022. S1. 006]
DING Sheng-duo,TAN Kun,TIAN Kun,et al.Improved Algorithm of Extreme Learning Machine Based on Adaptive Genetic Algorithm[J].,2022,32(11):26.[doi:10. 3969 / j. issn. 1673-629X. 2022. S1. 006]