[1]范馨月.基于小波降噪的深度极限学习机交通流量预测[J].计算机技术与发展,2021,31(11):41-45.[doi:10. 3969 / j. issn. 1673-629X. 2021. 11. 007]
 FAN Xin-yue.Traffic Flow Prediction Based on Deep Extreme Learning Machine with Wavelet De-noising[J].,2021,31(11):41-45.[doi:10. 3969 / j. issn. 1673-629X. 2021. 11. 007]
点击复制

基于小波降噪的深度极限学习机交通流量预测()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
31
期数:
2021年11期
页码:
41-45
栏目:
大数据分析与挖掘
出版日期:
2021-11-10

文章信息/Info

Title:
Traffic Flow Prediction Based on Deep Extreme Learning Machine with Wavelet De-noising
文章编号:
1673-629X(2021)11-0041-05
作者:
范馨月
贵州大学 数学与统计学院 数学系,贵州 贵阳 550025
Author(s):
FAN Xin-yue
Faculty of Mathematics,School of Mathematics and Statistics,Guizhou University,Guiyang 550025,China
关键词:
短时交通流预测极限学习机小波降噪深度极限学习机小波 BP 神经网络
Keywords:
short term traffic flow predictionextreme learning machinewavelet de-noisingdeep extreme learning machinewavelet BPneural network
分类号:
TP31;U491. 14
DOI:
10. 3969 / j. issn. 1673-629X. 2021. 11. 007
摘要:
为了克服非线性和强噪声特征对交通流短时预测准确度的影响, 应用交通流预测模型获得更为准确的交通流信息是智能交通建设的关键环节。文中构建了小波降噪的深度极限学习机对城市道路的交通流量进行预测, 并与原极限学习机和小波 BP 神经网络模型的预测效果进行比较。 将实验城市一年中电子警察采集到的各路口五分钟车流量作为训练集, 构建了极限学习机、基于小波降噪的深度极限学习机和小波 BP 神经网络模型,分别对各路口高峰时段车流量进行预测, 采用三类误差分析指标刻画三种模型的预测效果。实验结果表明,小波降噪的深度极限学习机预测误差评价值MAPE 为 0. 234%, MRE 为 0. 002 9,RSE 为 0. 699 9,其值均小于原极限学习机和小波 BP 神经网络的误差指标,有较好的预测效果,从而说明小波降噪的深度极限学习机对短时交通流预测的合理性和可行性,为短时交通流的预测提供了一种新的解决思路。
Abstract:
In order to overcome the influence of nonlinear and strong noise characteristics on the accuracy of short-term traffic flow prediction,the application of traffic flow prediction model to obtain more accurate traffic flow information is the key to the construction of intelligent transportation system. In this paper,the deep extreme learning machine with wavelet de-noising is constructed to predict the traffic flow,and the prediction effect is compared with the original extreme learning machine and wavelet BP neural network model.Taking the five minute traffic flow of each intersection collected by the electronic police in one year as the training set, the extreme learning machine,the deep extreme learning machine with wavelet de-noising and the wavelet BP neural network model are constructed to predict the traffic flow of each intersection in peak hours,and three kinds of error analysis indexes are used to describe the prediction effect of the three models. The experiment shows that the MAPE,MRE and RSE of deep extreme learning machine wavelet de-noisingare 0. 234% ,0. 002 9 and 0. 699 9 respectively,which are less than the error indexes of the original extreme learning machine and wavelet BP neural network,with better prediction effect. Therefore,the rationality and feasibility of deep extreme learning machine with wavelet de-noising for short - term traffic flow prediction are illustrated, which provides a new solution for short - term traffic flow prediction measurement.

相似文献/References:

[1]刘作志,刘欢,林耀海. 基于极限学习机的图像压缩算法[J].计算机技术与发展,2015,25(05):13.
 LIU Zuo-zhi,LIU Huan,LIN Yao-hai. Image Compression Algorithm Based on Extreme Learning Machine[J].,2015,25(11):13.
[2]梅朵[],郑黎黎[],刘春晓[],等. 基于混合算法优化SVM的短时交通流预测[J].计算机技术与发展,2017,27(11):92.
 MEI Duo[],ZHENG Li-li[],LIU Chun-xiao[],et al. A Short-term Traffic Flow Prediction Model Based on Support Vector Machine Optimized by Hybrid Algorithm[J].,2017,27(11):92.
[3]邓万宇,张 倩,屈玉涛.基于ELM-AE 的二进制非线性哈希算法[J].计算机技术与发展,2017,27(12):61.[doi:10.3969/ j. issn.1673-629X.2017.12.014]
 DENG Wan-yu,ZHANG Qian,QU Yu-tao.A Binary Nonlinear Hashing Algorithm with ELM Auto-encoders[J].,2017,27(11):61.[doi:10.3969/ j. issn.1673-629X.2017.12.014]
[4]佘雅莉,周 良.基于改进在线序列学习机的危险源识别算法[J].计算机技术与发展,2018,28(09):72.[doi:10.3969/ j. issn.1673-629X.2018.09.016]
 SHE Ya-li,ZHOU Liang.Hazard Identification Algorithm Based on Improved Online Sequential Extreme Learning Machine[J].,2018,28(11):72.[doi:10.3969/ j. issn.1673-629X.2018.09.016]
[5]朱小明.基于多光谱遥感图像信息的水质污染监测研究[J].计算机技术与发展,2018,28(11):52.[doi:10.3969/ j. issn.1673-629X.2018.11.012]
 ZHU Xiao-ming.Research on Water Quality Monitoring Based on Multi-spectral Remote Sensing Imagery[J].,2018,28(11):52.[doi:10.3969/ j. issn.1673-629X.2018.11.012]
[6]刘俊杰,张昕,杨乐,等.基于 DELM 的不确定数据流分类算法[J].计算机技术与发展,2019,29(03):101.[doi:10.3969/ j. issn.1673-629X.2019.03.022]
 LIU Jun-jie,ZHANG Xin,YANG Le,et al.An Uncertain Data Stream Classification Algorithm Based on Distributed Extreme Learning Machine[J].,2019,29(11):101.[doi:10.3969/ j. issn.1673-629X.2019.03.022]
[7]许二戗,于化龙.基于粒子群的多标记阈值自适应极限学习机[J].计算机技术与发展,2019,29(04):47.[doi:10. 3969 / j. issn. 1673-629X. 2019. 04. 010]
 XU Er-qiang,YU Hua-long.An Extreme Learning Machine of Multi-label Threshold Adaptation Based on Particle Swarm Optimization[J].,2019,29(11):47.[doi:10. 3969 / j. issn. 1673-629X. 2019. 04. 010]
[8]李佩钰.一种基于小波和神经网络的短时交通流量预测[J].计算机技术与发展,2020,30(01):135.[doi:10. 3969 / j. issn. 1673-629X. 2020. 01. 024]
 LI Pei-yu.Short-term Traffic Flow Prediction Based on Wavelet and Neural Network[J].,2020,30(11):135.[doi:10. 3969 / j. issn. 1673-629X. 2020. 01. 024]
[9]陆子豪,荆晓远.基于改进 SMOTE 的半监督极限学习机缺陷预测[J].计算机技术与发展,2021,31(12):21.[doi:10. 3969 / j. issn. 1673-629X. 2021. 12. 004]
 LU Zi-hao,JING Xiao-yuan.Semi-supervised Extreme Learning Machine Based on Improved SMOTE for Software Defect Prediction[J].,2021,31(11):21.[doi:10. 3969 / j. issn. 1673-629X. 2021. 12. 004]
[10]丁胜夺,谭 昆,田 琨,等.基于自适应遗传算法的极限学习机改进算法[J].计算机技术与发展,2022,32(S1):26.[doi:10. 3969 / j. issn. 1673-629X. 2022. S1. 006]
 DING Sheng-duo,TAN Kun,TIAN Kun,et al.Improved Algorithm of Extreme Learning Machine Based on Adaptive Genetic Algorithm[J].,2022,32(11):26.[doi:10. 3969 / j. issn. 1673-629X. 2022. S1. 006]

更新日期/Last Update: 2021-11-10