[1]谢 泽,朱建生,李 雯.基于门控循环单元的铁路客票业务流量数据预测[J].计算机技术与发展,2021,31(10):209-214.[doi:10. 3969 / j. issn. 1673-629X. 2021. 10. 035]
 XIE Ze,ZHU Jian-sheng,LI Wen.Network Traffic Data Forecast of Railway Passenger Ticket Service System Based on Gated Recurrent Unit[J].,2021,31(10):209-214.[doi:10. 3969 / j. issn. 1673-629X. 2021. 10. 035]
点击复制

基于门控循环单元的铁路客票业务流量数据预测()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
31
期数:
2021年10期
页码:
209-214
栏目:
应用前沿与综合
出版日期:
2021-10-10

文章信息/Info

Title:
Network Traffic Data Forecast of Railway Passenger Ticket Service System Based on Gated Recurrent Unit
文章编号:
1673-629X(2021)10-0209-06
作者:
谢 泽1 朱建生2 李 雯2
1. 中国铁道科学研究院,北京 100081;
2. 中国铁道科学研究院电子计算技术研究所,北京 100081
Author(s):
XIE Ze1 ZHU Jian-sheng2 LI Wen2
1. China Academy of Railway Sciences,Beijing 100081,China;
2. Institute of Computing Technologies,China Academy of Railway Sciences,Beijing 100081,China
关键词:
门控循环单元流量数据时序拟合趋势预测数据预警
Keywords:
gated recurrent unitnetwork traffic datatime series fittingtrend predictiondata early warning
分类号:
TP391. 9
DOI:
10. 3969 / j. issn. 1673-629X. 2021. 10. 035
摘要:
铁路客票业务流量数据是反映系统业务运行状态的重要记录,为加强流量数据异常预警, 针对流量数据具有历史规律性及突变性的特点,选用适于解析数据时间序列依赖度高的门控循环单元神经网络模型( GRU) ,对流量数据实现时序拟合及趋势预测。GRU 采用不同时间步长对流量数据进行拟合的结果在整点或半点周期时间步长具有局部最小特征,该特征与铁路售票时刻规则形成的时间序列依赖规律相一致。 在相同数据条件下, 使用 GRU 算法与自回归模型等主流预测算法进行拟合准确度对比,结果证明 GRU 在解析铁路客票业务流量数据依赖方面具备较高的准确性。经过对异常流量数据趋势预测及拟合,在数据异常区间,预测结果与真实数据的拟合近似验证了 GRU 算法能够为铁路客票业务流量数据异常预警提供可行性策略。
Abstract:
The traffic data of railway passenger ticket service is important record to reflect the operation status of the system. In order to strengthen the early warning of abnormal traffic data,according to the characteristics of historical regularity and mutation of traffic data,the gated recurrent unit neural network model ( GRU) which is suitable for analyzing data with high dependence on time series is selected to realize time series fitting and trend prediction. The results of GRU fitting the flow data with different time steps have the local minimum feature in the whole point or half point cycle time, which is consistent with the time series dependence rule formed by the railway ticketing time rule. Under the same data conditions,GRU algorithm and auto regression model and other mainstream prediction algorithms are used to compare the fitting accuracy. The results show that GRU has high accuracy in analyzing the traffic data dependence of railway passenger ticket service. After the trend prediction and fitting analysis of abnormal traffic data, the difference between the predicted results and the real data is obvious in the data abnormal interval, which verifies that GRU algorithm can provide feasible strategies for the early warning of abnormal traffic data of railway passenger ticket service.

相似文献/References:

[1]师鸣若 姜中华 阎芳.一种快速宏观网络态势分析算法[J].计算机技术与发展,2009,(04):163.
 SHI Ming-ruo,JIANG Zhong-hua,YAN Fang.A Fast Security Cyberspace Situational Awareness Algorithm[J].,2009,(10):163.
[2]吴俊清,倪建成,魏媛媛.语音情感识别中面向小数据集的 CGRU 方法[J].计算机技术与发展,2020,30(12):77.[doi:10. 3969 / j. issn. 1673-629X. 2020. 12. 014]
 WU Jun-qing,NI Jian-cheng,WEI Yuan-yuan.CGRU Method for Small Datasets in Speech Emotion Recognition[J].,2020,30(10):77.[doi:10. 3969 / j. issn. 1673-629X. 2020. 12. 014]
[3]贾欣齐,李 睿,张志成,等.DenseNet-GRU:直肠癌 CT 影像分类的深度神经网络模型[J].计算机技术与发展,2021,31(03):111.[doi:10. 3969 / j. issn. 1673-629X. 2021. 03. 019]
 JIA Xin-qi,LI Rui,ZHANG Zhi-cheng,et al.DenseNet-GRU:A Deep Neural Network Model for CT Image Classification of Rectal Cancer[J].,2021,31(10):111.[doi:10. 3969 / j. issn. 1673-629X. 2021. 03. 019]
[4]吴长旺,黄 刚,胡婷婷.融合注意力机制的 GNN 推荐算法[J].计算机技术与发展,2022,32(10):7.[doi:10. 3969 / j. issn. 1673-629X. 2022. 10. 002]
 WU Chang-wang,HUANG Gang,HU Ting-ting.GNN Recommendation Algorithm Fused with Attention Mechanism[J].,2022,32(10):7.[doi:10. 3969 / j. issn. 1673-629X. 2022. 10. 002]
[5]殷 齐,丁 飞,朱 跃,等.基于 CNN 与多尺度特征融合的城市交通流预测模型[J].计算机技术与发展,2022,32(10):175.[doi:10. 3969 / j. issn. 1673-629X. 2022. 10. 029]
 YIN Qi,DING Fei,ZHU Yue,et al.An Urban Traffic Flow Prediction Model Based on CNN and Multi-scale Feature Fusion[J].,2022,32(10):175.[doi:10. 3969 / j. issn. 1673-629X. 2022. 10. 029]
[6]蔡宇航,廖光忠.基于改进降噪自编码模型的网络入侵检测[J].计算机技术与发展,2023,33(02):119.[doi:10. 3969 / j. issn. 1673-629X. 2023. 02. 018]
 CAI Yu-hang,LIAO Guang-zhong.Network Intrusion Detection Based on Improved Denoising Autoencoder Model[J].,2023,33(10):119.[doi:10. 3969 / j. issn. 1673-629X. 2023. 02. 018]
[7]赵嘉雨,段亚茹,何立明.基于 GRU-GCN-RDrop 模型的交通速度预测[J].计算机技术与发展,2023,33(04):120.[doi:10. 3969 / j. issn. 1673-629X. 2023. 04. 018]
 ZHAO Jia-yu,DUAN Ya-ru,HE Li-ming.Traffic Speed Prediction Based on GRU-GCN-RDrop Model[J].,2023,33(10):120.[doi:10. 3969 / j. issn. 1673-629X. 2023. 04. 018]
[8]魏 思,李欣泽*,郤丽媛,等.上下文特征注入融合的空气污染物浓度预测[J].计算机技术与发展,2023,33(09):196.[doi:10. 3969 / j. issn. 1673-629X. 2023. 09. 029]
 WEI Si,LI Xin-ze *,XI Li-yuan,et al.Air Pollutant Concentration Prediction Based on Context Feature Injection and Fusion[J].,2023,33(10):196.[doi:10. 3969 / j. issn. 1673-629X. 2023. 09. 029]
[9]欧阳有恒*,严大卫.基于 GRU_LSTM 及 RL 算法的伪随机指令生成器[J].计算机技术与发展,2024,34(02):78.[doi:10. 3969 / j. issn. 1673-629X. 2024. 02. 012]
 OUYANG You-heng*,YAN Da-wei.Pseudo Random Instruction Generator Based on GRU_LSTM and Reinforcement Learning Algorithms[J].,2024,34(10):78.[doi:10. 3969 / j. issn. 1673-629X. 2024. 02. 012]

更新日期/Last Update: 2021-10-10