[1]雷梦宁,丁爱玲,王新美,等.基于混合特征值的托攻击检测算法[J].计算机技术与发展,2021,31(10):87-92.[doi:10. 3969 / j. issn. 1673-629X. 2021. 10. 015]
 LEI Meng-ning,DING Ai-ling,WANG Xin-mei,et al.Shilling Attack Detection Algorithm Based on Hybrid Eigenvalue[J].,2021,31(10):87-92.[doi:10. 3969 / j. issn. 1673-629X. 2021. 10. 015]
点击复制

基于混合特征值的托攻击检测算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
31
期数:
2021年10期
页码:
87-92
栏目:
网络与安全
出版日期:
2021-10-10

文章信息/Info

Title:
Shilling Attack Detection Algorithm Based on Hybrid Eigenvalue
文章编号:
1673-629X(2021)10-0087-06
作者:
雷梦宁丁爱玲王新美韩佳倩曹 苗
长安大学 信息工程学院,陕西 西安 710061
Author(s):
LEI Meng-ningDING Ai-lingWANG Xin-meiHAN Jia-qianCAO Miao
School of Information Engineering,Chang’an University,Xi’an 710061,China
关键词:
推荐系统托攻击混合特征卡方估计值聚类算法
Keywords:
recommendation systemshilling attackhybrid featureChi-squareclustering algorithm
分类号:
TP391
DOI:
10. 3969 / j. issn. 1673-629X. 2021. 10. 015
摘要:
传统的托攻击检测方法多采用基于评分值差异的算法,其在小规模情况下易造成误判率过高的问题。 通过分析真实用户和攻击用户评分项目选择方式的差异,文中提出了一种基于混合特征值的托攻击检测算法。 该算法在 Degsim、MeanVar、WDA 特征检测指标组成的特征模型基础上,加入了流行项目卡方估计值( Chi-square of popular item,CHIP) 、新颖项目卡方估计值( Chi-square of novel item,CHIN) 两个特征检测指标,构成一种新的特征模型。 该特征模型在传统方法的基础上,提出对项目与流行项目、项目与新颖项目之间的关联程度的考量,依据特征属性选择 K-means 聚类与阈值判断相结合的分类方法,可有效区分攻击用户和正常用户。 实验对比表明,该算法在小规模情况下可有效解决误判率高的问题,具有更好的检测准确度。
Abstract:
Aiming at the problem of high misjudgment rate in shilling attack detection of traditional differential algorithm based on score value,we propose a shilling attack detection algorithm based on the hybrid eigenvalue by analyzing the selection mode difference of score item between real users and false users. The algorithm adds two feature detection indexes CHIP ( Chi-square of popular item) and CHIN( Chi-square of novel item) to form a new feature model on the basis of the feature model with three feature detection indexes,Degsim,MeanVar and WDA. In the new feature model,we consider the correlation degrees between the item and popular item,and between the item and novel item based on the traditional differential algorithm,and according to characteristic attribute,adopt the classification method which combines K - means clustering and threshold judgment to distinguish the attacking user from the normal user effectively.Experiment shows that the proposed algorithm can effectively solve the problem of high misjudgment rate in small scale and has better accuracy.

相似文献/References:

[1]邵延振 蒙韧 袁鼎荣 李新友.基于Web结构分区的协同过滤推荐算法研究[J].计算机技术与发展,2010,(06):67.
 SHAO Yan-zhen,MENG Ren,YUAN Ding-rong,et al.Collaborative Filtering Recommendation Algorithm Research Based on Web Blocks[J].,2010,(10):67.
[2]曹毅 贺卫红.基于内容过滤的电子商务推荐系统研究[J].计算机技术与发展,2009,(06):182.
 CAO Yi,HE Wei-hong.Research on E- Commerce Recommender System Based on Content - Based Filtering[J].,2009,(10):182.
[3]赵鹏 蔡庆生 王清毅.一种用于文章推荐系统中的用户模型表示方法[J].计算机技术与发展,2007,(01):4.
 ZHAO Peng,CAI Qing-sheng,WANG Qing-yi.A Novel Representation of User Profile in Document Recommendation System[J].,2007,(10):4.
[4]高静 应吉康.基于人工免疫系统的推荐系统[J].计算机技术与发展,2007,(05):180.
 GAO Jing,YING Ji-kang.A Recommendation System Based on Artificial Immune System[J].,2007,(10):180.
[5]游文 叶水生.电子商务推荐系统中的协同过滤推荐[J].计算机技术与发展,2006,(09):70.
 YOU Wen,YE Shui-sheng.A Survey of Collaborative Filtering Algorithm Applied in E- commerce Recommender System[J].,2006,(10):70.
[6]华铨平.基于FNN的家纺产品个性化推荐系统的研究[J].计算机技术与发展,2011,(09):183.
 HUA Quan-ping.Research on Personalized Recommendation System of Textile Products Used by Family Based on FNN[J].,2011,(10):183.
[7]马言春 彭志平.基于市场机制的云服务管理研究[J].计算机技术与发展,2012,(03):214.
 MA Yan-chun,PENG Zhi-ping.Research on Cloud Service Management Based on Market Mechanism[J].,2012,(10):214.
[8]刘厚良.网络协同戏剧中个性化戏剧资源推荐系统[J].计算机技术与发展,2012,(08):25.
 LIU Hou-liang.Personalized Drama Resource Recommendation System in Cooperative Play[J].,2012,(10):25.
[9]陆晓敏 崇志宏 陈国庆.基于本体的商品推荐方法[J].计算机技术与发展,2012,(10):10.
 LU Xiao-min,CHONG Zhi-hong,CHEN Guo-qing.Product Recommending Method Based on Ontology[J].,2012,(10):10.
[10]范虎,花伟伟.协同过滤推荐算法的研究与改进[J].计算机技术与发展,2013,(09):66.
 FAN Hu[],HUA Wei-wei[].Research and Improvement of Collaborative Filtering Recommendation Algorithm[J].,2013,(10):66.
[11]吕成戍.基于用户项目属性偏好的协同过滤推荐算法[J].计算机技术与发展,2018,28(04):152.[doi:10.3969/ j. issn.1673-629X.2018.04.032]
 LYU Cheng-shu.A Robust Collaborative Filtering Recommendation Algorithm Based on User Preference of Item Attributes[J].,2018,28(10):152.[doi:10.3969/ j. issn.1673-629X.2018.04.032]

更新日期/Last Update: 2021-10-10