[1]利向晴,夏国恩,张显全,等.基于深度神经网络权重集成的客户流失预测[J].计算机技术与发展,2021,31(10):18-23.[doi:10. 3969 / j. issn. 1673-629X. 2021. 10. 004]
 LI Xiang-qing,XIA Guo-en,ZHANG Xian-quan,et al.Customer Churn Prediction Based on Deep Neural Network Weight Ensemble[J].,2021,31(10):18-23.[doi:10. 3969 / j. issn. 1673-629X. 2021. 10. 004]
点击复制

基于深度神经网络权重集成的客户流失预测()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
31
期数:
2021年10期
页码:
18-23
栏目:
大数据分析与挖掘
出版日期:
2021-10-10

文章信息/Info

Title:
Customer Churn Prediction Based on Deep Neural Network Weight Ensemble
文章编号:
1673-629X(2021)10-0018-06
作者:
利向晴1 夏国恩12 张显全1 唐 琪1 叶 帅1
1. 广西师范大学 计算机科学与信息工程学院,广西 桂林 541004;
2. 广西财经学院 工商管理学院,广西 南宁 530003
Author(s):
LI Xiang-qing1 XIA Guo-en12 ZHANG Xian-quan1 TANG Qi1 YE Shuai1
1. School of Computer Science and Information Engineering,Guangxi Normal University,Guilin 541004,China;
2. School of Business Administration,Guangxi University of Finance and Economics,Nanning 530003,China
关键词:
客户流失深度学习深度神经网络随机加权平均权重集成
Keywords:
customer churndeep learningdeep neural networkstochastic weight averageweighted ensemble
分类号:
TP183
DOI:
10. 3969 / j. issn. 1673-629X. 2021. 10. 004
摘要:
如今许多的企业都面临着客户流失的实质问题,客户流失预测对企业的发展也是尤为重要的。 对于客户流失预测的问题也有很多解决方案,传统的机器学习方法存在特征工程对模型效果影响较大的缺点,而深度学习则使得算法不会太依赖于领域专业知识和人工特征提取。 为提升预测效果,提出一种深度神经网络权重集成方法来对电信客户流失进行预测,其主要思想是在做深度神经网络( DNN) 训练的时候,通过随机加权平均( stochastic weight average,SWA) 结合同一网络结构下的不同训练阶段的权重获取集成模型,然后对客户流失进行预测。 实验结果表明,相比于深度神经网络训练,结合随机加权平均权重集成的深度神经网络训练时间缩短了 2. 96 倍,同时,准确率、精准率、召回率和 F1 值均有所提升。
Abstract:
Now many enterprises are faced with the problem of customer churn,and customer churn prediction is particularly important for the development of enterprises. There are many solutions for customer churn prediction. Traditional machine learning methods have the disadvantage that feature engineering has great influence on model effect, and deep learning makes the algorithm less dependent on domain expertise and artificial feature extraction. In order to improve the prediction effect, a deep neural network combined with stochastic weights average is proposed to predict customer churn. The main idea is to obtain the integration model by combining the stochastic weight average ( SWA) with the weights of different training stages under the same network structure when doing DNN training,and then predict customer churn. The experiment shows that compared with the deep neural network training,the training time of the deep neural network combined with the stochastic weighted average weight integration is shortened by 2. 96 times,and the accuracy,precision,recall and F1 are improved.

相似文献/References:

[1]杨杉 何跃.数据仓库和数据挖掘技术在保险公司中的应用[J].计算机技术与发展,2011,(06):157.
 YANG Shan,HE Yue.Application of Data Warehouse and Data Mining to Life Insurance Company[J].,2011,(10):157.
[2]陈强锐,谢世朋.基于深度学习的肺部肿瘤检测方法[J].计算机技术与发展,2018,28(04):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
 CHEN Qiang-rui,XIE Shi-peng.Lung Cancer Detection Method Based on Deep Learning[J].,2018,28(10):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
[3]施泽浩,赵启军.基于全卷积网络的目标检测算法[J].计算机技术与发展,2018,28(05):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
 SHI Ze-hao,ZHAO Qi-jun.Object Detection Algorithm Based on Fully Convolutional Neural Network[J].,2018,28(10):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
[4]黄法秀,张世杰,吴志红,等.数据增广下的人脸识别研究[J].计算机技术与发展,2020,30(03):67.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
 HUANG Fa-xiu,ZHANG Shi-jie,WU Zhi-hong,et al.Research on Face Recognition Based on Data Augmentation[J].,2020,30(10):67.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
[5]陈浩翔,蔡建明,刘铿然,等. 手写数字深度特征学习与识别[J].计算机技术与发展,2016,26(07):19.
 CHEN Hao-xiang,CAI Jian-ming,LIU Keng-ran,et al. Deep Learning and Recognition of Handwritten Numeral Features[J].,2016,26(10):19.
[6]高翔,陈志,岳文静,等.基于视频场景深度学习的人物语义识别模型[J].计算机技术与发展,2018,28(06):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
 GAO Xiang,CHEN Zhi,YUE Wen-jing,et al.Human Semantic Recognition Model Based on Video Scene Deep Learning[J].,2018,28(10):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
[7]贺飞翔,赵启军. 基于深度学习的头部姿态估计[J].计算机技术与发展,2016,26(11):1.
 HE Fei-xiang,ZHAO Qi-jun. Head Pose Estimation Based on Deep Learning[J].,2016,26(10):1.
[8]徐 融,邱晓晖.一种改进的 YOLO V3 目标检测方法[J].计算机技术与发展,2020,30(07):30.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 007]
 XU Rong,QIU Xiao-hui.An Improved YOLO V3 Object Detection[J].,2020,30(10):30.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 007]
[9]曾志平[] [],萧海东[],张新鹏[]. 基于DBN的金融时序数据建模与决策[J].计算机技术与发展,2017,27(04):1.
 ZENG Zhi-ping[] [],XIAO Hai-dong[],ZHANG Xin-peng[]. Modeling and Decision-making of Financial Time Series Data with DBN[J].,2017,27(10):1.
[10]李全兵,文 钊*,田艳梅*,等.基于 WGAN 的音频关键词识别研究[J].计算机技术与发展,2021,31(08):26.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 005]
 LI Quan-bing,WEN Zhao *,TIAN Yan-mei *,et al.Research on Audio Keywords Recognition Based on WassersteinGenerative Adversarial Network[J].,2021,31(10):26.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 005]
[11]马文斌,夏国恩.基于深度神经网络的客户流失预测模型[J].计算机技术与发展,2019,29(09):76.[doi:10. 3969 / j. issn. 1673-629X. 2019. 09. 015]
 MA Wen-bin,XIA Guo-en.Customer Churn Prediction Model Based on Deep Neural Network[J].,2019,29(10):76.[doi:10. 3969 / j. issn. 1673-629X. 2019. 09. 015]

更新日期/Last Update: 2021-10-10