[1]杜潘飞,王志辉,李雄伟,等.异常行为检测数据集快速构建方法[J].计算机技术与发展,2021,31(09):155-160.[doi:10. 3969 / j. issn. 1673-629X. 2021. 09. 026]
 DU Pan-fei,WANG Zhi-hui,LI Xiong-wei,et al.Fast Construction Strategy of Abnormal Action Detection Dataset[J].,2021,31(09):155-160.[doi:10. 3969 / j. issn. 1673-629X. 2021. 09. 026]
点击复制

异常行为检测数据集快速构建方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
31
期数:
2021年09期
页码:
155-160
栏目:
应用前沿与综合
出版日期:
2021-09-10

文章信息/Info

Title:
Fast Construction Strategy of Abnormal Action Detection Dataset
文章编号:
1673-629X(2021)09-0155-06
作者:
杜潘飞1 王志辉2 李雄伟1 朱永旺2
1. 陆军工程大学 石家庄校区,河北 石家庄 050003;
2. 河北建设投资集团有限责任公司,河北 石家庄 050001
Author(s):
DU Pan-fei1 WANG Zhi-hui2 LI Xiong-wei1 ZHU Yong-wang2
1. Shijiazhuang Campus,The Army Engineering University of PLA,Shijiazhuang 050003,China;
2. Hebei Construction & Investment Group Co. ,Ltd. ,Shijiazhuang 050001,China
关键词:
数据集构建行为识别目标检测半自动构建方法异常行为
Keywords:
dataset constructionaction recognitionobject detectionsemi-automatic construction methodabnormal action
分类号:
TP391. 4
DOI:
10. 3969 / j. issn. 1673-629X. 2021. 09. 026
摘要:
文中提出一种快速构建异常行为检测数据集方法,该方法以一种半自动的方式完成数据集的构建,有助于减少构建过程中人工操作的工作量。 首先以网络爬虫的方式自动地从互联网上搜索并下载包含指定动作的视频,之后以当前SOTA( state-of-the-art) 的目标检测模型作为人物空间位置检测器,最后以人工标注和行为检测模型相结合的迭代方式完成人物行为的标注,其中需要手工完成的主要包括对下载的视频的挑选、人物边框核对以及一部分的行为标注,手工部分的工作量仅占整个任务的工作量的 15% 左右。 实验表明,由该方法所构建的数据集可以作为异常行为检测模型的训练集使用,验证了该方法的有效性。 通过该方法可以快速地构建一个大尺度、高质量的行为检测数据集,将有助于推动异常行为检测研究的深入开展。
Abstract:
We propose a fast strategy to build abnormal action detection dataset. This strategy completes the construct-ion of dataset in a semi-automatic way,which significantly reduces the workloads of manual operation in the construction pipeline. This method searches and downloads videos containing specified actions automatically from the Internet in the form of web crawler. The object detection model with the state-of-the-art performance is used as the person spatial detector. Finally, the human action annotations are complete diteratively by combining manual annotation and action detection model. What needs to be done manually is the selection? of down loaded video,the check of person bounding boxes and a part of action annotations. In the experiment section,it demonstrates that the dataset constructed by this method is effective and can be used as the training set of abnormal action detection model. Furthermore,it shows that this method can quickly build a large-scale and high-quality action detection dataset,which will accelerate the development of research and application of abnormal action detection.

相似文献/References:

[1]王博,李燕.视频序列中的时空兴趣点检测及其自适应分析[J].计算机技术与发展,2014,24(04):49.
 WANG Bo,LI Yan.Space-time Interest Points Detection in Video Sequence and Its Adaptive Analysis[J].,2014,24(09):49.
[2]高蕾[],曹建忠[]. 基于可穿戴传感器的行为识别随机逼近模型[J].计算机技术与发展,2014,24(12):83.
 GAO Lei[],CAO Jian-zhong[]. Activity Recognition Using Stochastic Approximation Model Based on Wearable Sensor[J].,2014,24(09):83.
[3]石爱辉,程勇,曹雪虹.结合码本优化和特征融合的人体行为识别方法[J].计算机技术与发展,2018,28(02):107.[doi:10.3969/j.issn.1673-629X.2018.02.024]
 SHI Ai-hui,CHENG Yong,CAO Xue-hong.A Human Action Recognition Method Combined with Codebook Optimization and Feature Fusion[J].,2018,28(09):107.[doi:10.3969/j.issn.1673-629X.2018.02.024]
[4]黄菲菲[],曹江涛[],姬晓飞[]. 基于多通道信息融合的双人交互动作识别算法[J].计算机技术与发展,2016,26(03):58.
 HUANG Fei-fei[],CAO Jiang-tao[],JI Xiao-fei[]. Two-human Interaction Recognition Algorithm Based on Multi-channels Information Fusion[J].,2016,26(09):58.
[5]毛驾燕,沈苏彬.一种面向智能家居老人看护系统的实现方案[J].计算机技术与发展,2018,28(08):164.[doi:10.3969/ j. issn.1673-629X.2018.08.035]
 MAO Jia-yan,SHEN Su-bin.A Realization Scheme for Elderly Care System in Smart Home[J].,2018,28(09):164.[doi:10.3969/ j. issn.1673-629X.2018.08.035]
[6]韩欣欣,叶奇玲.基于 SIFT 和 HOG 特征融合的人体行为识别方法[J].计算机技术与发展,2019,29(06):71.[doi:10. 3969 / j. issn. 1673-629X. 2019. 06. 015]
 HAN Xin-xin,YE Qi-ling.Human Action Recognition Based on Feature Fusion of SIFT and HOG[J].,2019,29(09):71.[doi:10. 3969 / j. issn. 1673-629X. 2019. 06. 015]
[7]闫 坤,沈苏彬.一种基于智能家居的用户行为预测方法[J].计算机技术与发展,2020,30(01):19.[doi:10. 3969 / j. issn. 1673-629X. 2020. 01. 004]
 YAN Kun,SHEN Su-bin.A User Behavior Prediction Method Based on Smart Home[J].,2020,30(09):19.[doi:10. 3969 / j. issn. 1673-629X. 2020. 01. 004]
[8]姚 捃,郭志林.一种端到端的考场多目标行为识别算法[J].计算机技术与发展,2022,32(09):174.[doi:10. 3969 / j. issn. 1673-629X. 2022. 09. 027]
 YAO Jun,GUO Zhi-lin.An End-to-end Multi-objective Behavior Recognition Algorithm for Examination Room[J].,2022,32(09):174.[doi:10. 3969 / j. issn. 1673-629X. 2022. 09. 027]
[9]陈 鑫,叶 宁,徐 康,等.基于 EfficientNet 模型的毫米波雷达人体行为识别[J].计算机技术与发展,2022,32(09):134.[doi:10. 3969 / j. issn. 1673-629X. 2022. 09. 021]
 CHEN Xin,YE Ning,XU Kang,et al.FMCW Radar Human Action Recognition System Based on EfficientNet Model[J].,2022,32(09):134.[doi:10. 3969 / j. issn. 1673-629X. 2022. 09. 021]

更新日期/Last Update: 2021-09-10