[1]路 婷,王 伟.基于遗传特征的车载网络分簇路由算法研究[J].计算机技术与发展,2021,31(09):13-18.[doi:10. 3969 / j. issn. 1673-629X. 2021. 09. 003]
 LU Ting,WANG Wei.Research on Clustering Routing Algorithm in Vehicle Network Based on Genetic Features[J].,2021,31(09):13-18.[doi:10. 3969 / j. issn. 1673-629X. 2021. 09. 003]
点击复制

基于遗传特征的车载网络分簇路由算法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
31
期数:
2021年09期
页码:
13-18
栏目:
人工智能
出版日期:
2021-09-10

文章信息/Info

Title:
Research on Clustering Routing Algorithm in Vehicle Network Based on Genetic Features
文章编号:
1673-629X(2021)09-0013-06
作者:
路 婷王 伟
西安工程大学 计算机科学学院,陕西 西安 710048
Author(s):
LU TingWANG Wei
School of Computer Science,Xi’an Polytechnic University,Xi’an 710048,China
关键词:
车载自组织网络安全预警分簇路由算法遗传算法NS2. 35
Keywords:
vehicle ad hoc networksecurity warningclustering routing algorithmgenetic algorithmNS2. 35
分类号:
TP393. 1
DOI:
10. 3969 / j. issn. 1673-629X. 2021. 09. 003
摘要:
路由算法是车载自组织网络的通信基础。 然而现有的路由算法存在高时延、通信性能不稳定等缺陷, 难以适应车辆变道预警、超车预警、碰撞预警和车载网络安全预警需求。 基于此,文中采用 IEEE802. 11p 通信标准基于经典的曼哈顿街区,提出了基于遗传特征的分簇路由( genetic-characteristics-based clustering routing,GCCR) 算法。 该算法在分簇算法基础上,采取选择、交叉、变异操作对服务节点进行筛选,利用遗传算法自适应、择优等特性对分簇路由算法进行优化,既达到对服务节点优化的目的,又防止算法陷入局部最优。 实验使用 NS2 软件仿真,并与经典 AODV 贪婪路由算法和 LEACH分簇路由算法进行性能比较。 实验结果表明,提出的基于遗传特征的分簇路由算法在数据包投递率、传输时延、网络开销方面具有明显的优势,符合车载网络安全预警应用的要求。
Abstract:
Routing algorithm is the communication foundation of vehicle network. However,the existing routing algorithms have defects such as high delay and unstable communication performance,which are difficult? ? ? ?to adapt to the requirements of lane change warning,overtaking warning,collision warning and on-board network security warning. Based on this, we adopt IEEE 802. 11p communication standard and propose? ? ? ? ?a genetic based clustering routing (GCCR) algorithm based on classic Manhattan Block. Based on the clustering algorithm,the service nodes are selected by selection, crossover and mutation,and the clustering routing algorithm is optimized by using the adaptive and selective features of genetic algorithm,which not only achieves the purpose of optimizing the service nodes,but also prevents the algorithm from falling into the local optimal. NS2 software is used in the experiment,and the performance is compared with the classical AODV greedy routing algorithm and LEACH clustering routing algorithm. The experiment shows that the clustering routing algorithm based on genetic characteristics proposed has obvious advantages in packet delivery rate, transmission delay and network overhead,and meets the requirements of on-board network security warning application.

相似文献/References:

[1]赵淑芳 陈立潮.BP神经网络在煤矿排水设备监测中的应用[J].计算机技术与发展,2010,(08):250.
 ZHAO Shu-fang,CHEN Li-chao.Application of BP Neural Network in Colliery Drainage Monitoring[J].,2010,(09):250.
[2]于明鹭[],刘南杰[][],赵海涛[][]. 车载网中紧急消息的广播性能分析[J].计算机技术与发展,2015,25(12):169.
 YU Ming-lu[],LIU Nan-jie[][],ZHAO Hai-tao[][]. Performance Analysis of Emergency Message Broadcast in Vehicular Ad Hoc Networks[J].,2015,25(09):169.
[3]于明鹭[],刘南杰[][],赵海涛[][]. 车载网中基于分段与协作的MAC协议[J].计算机技术与发展,2016,26(03):80.
 YU Ming-lu[],LIU Nan-jie[][],ZHAO Hai-tao[][]. Segmentation and Cooperation Based Media Access Control Protocol in VANETs[J].,2016,26(09):80.
[4]周鹏,肖晓强,宁伟勋. 基于车辆轨迹社会属性的VANETs路由算法[J].计算机技术与发展,2017,27(11):28.
 ZHOU Peng,XIAO Xiao-qiang,NING Wei-xun. A VANETs Routing Algorithm Based on Trace Data’ s Social Attribute[J].,2017,27(09):28.
[5]张文都乔雅.车载自组织网络下车辆移动模型仿真测试研究[J].计算机技术与发展,2018,28(11):188.[doi:10.3969/j.issn.1673-629X.2018.11.041]
 ZHANG Wen-du,QIAO Ya.Research on Vehicular Mobility Model Simulation Test in VANETs[J].,2018,28(09):188.[doi:10.3969/j.issn.1673-629X.2018.11.041]
[6]李炳圻,梅中辉.一种适用于城市环境的VANET成簇算法[J].计算机技术与发展,2019,29(01):154.[doi:10. 3969 / j. issn. 1673-629X. 2019. 01. 032]
 LI Bing-qi,MEI Zhong-hui.A Stable Clustering Algorithm Applied in VANETs onUrban Road Environment[J].,2019,29(09):154.[doi:10. 3969 / j. issn. 1673-629X. 2019. 01. 032]
[7]汤媛媛,朱琦,胡晗.基于内容及留存时间的VANETs转发策略[J].计算机技术与发展,2019,29(04):116.[doi:10. 3969 / j. issn. 1673-629X. 2019. 04. 024]
 TANG Yuan-yuan,ZHU Qi,HU Han.A VANETs Forwarding Strategy Based on Content and Retention Time[J].,2019,29(09):116.[doi:10. 3969 / j. issn. 1673-629X. 2019. 04. 024]
[8]陈清秋,朱 琦.VANET 中基于车辆分簇的协作缓存策略[J].计算机技术与发展,2022,32(11):214.[doi:10. 3969 / j. issn. 1673-629X. 2022. 11. 032]
 CHEN Qing-qiu,ZHU Qi.Cooperative Caching Strategy Based on Vehicle Clustering in VANET[J].,2022,32(09):214.[doi:10. 3969 / j. issn. 1673-629X. 2022. 11. 032]

更新日期/Last Update: 2021-09-10