[1]赵 纯,董小明.基于深度 Q-Learning 的信号灯配时优化研究[J].计算机技术与发展,2021,31(08):198-203.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 034]
 ZHAO Chun,DONG Xiao-ming.Research on Signal Timing Optimization Based on Deep Q-Learning[J].,2021,31(08):198-203.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 034]
点击复制

基于深度 Q-Learning 的信号灯配时优化研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
31
期数:
2021年08期
页码:
198-203
栏目:
应用前沿与综合
出版日期:
2021-08-10

文章信息/Info

Title:
Research on Signal Timing Optimization Based on Deep Q-Learning
文章编号:
1673-629X(2021)08-0198-06
作者:
赵 纯董小明
安庆师范大学 计算机与信息学院,安徽 安庆 246000
Author(s):
ZHAO ChunDONG Xiao-ming
School of Computer and Information,Anqing Normal University,Anqing 246000,China
关键词:
交通流管理系统深度强化学习信号配时交通效率深层神经网络
Keywords:
traffic flow management systemdeep reinforcement learningsignal timingtraffic efficiencydeep neural network
分类号:
U491
DOI:
10. 3969 / j. issn. 1673-629X. 2021. 08. 034
摘要:
交通信号配时具有不确定性,合理确定城市交通信号配时对提升交通系统的运行效率至关重要。 随着社会的不断进步和车辆的不断增长,传统交通流管理系统亟待改进,先进的城市交通控制系统是提高城市交通运行效率的重要途径之一,同时也是城市现代化的一个重要标志。 一般的静态控制方法对交叉口的红绿灯配时策略能够起到一定的作用,但是效果不明显,因此有必要结合时下热门的深度强化学习来解决交通信号灯配时问题。 通过基于深度 Q-Learning 的配时方案来优化交叉口的通行问题,选择正确的红绿灯配时从而最大化交通效率。 基于经验回放机制,运用深度神经网络进行网络训练和预测输出。 实验结果表明,改进的深度强化学习方法相较于传统静态控制方法的控制效果更佳。
Abstract:
The timing of traffic signal is uncertain. Reasonable timing of urban traffic signal is quite important to improve the operation efficiency of the traffic system. With the continuous progress of the society and the growth of vehicles,it is necessary to improve the traditional traffic flow management system. Advanced urban traffic control system is one of the important ways to improve the efficiency of urban traffic operation,and it is also an important symbol of urban modernization. The general static control method can play a certain role in the traffic light timing strategy,but the effect is not obvious. Therefore,it is necessary to combine the current popular deep reinfor- cement learning to solve the problem of traffic signal timing. The timing scheme based on deep Q-learning is adopted to optimize the traffic problems at intersections, and the correct timing of traffic lights is selected to maximize traffic efficiency. Based on experience replay, the deep neural network is used to train the network and predict the output. The experiment shows that the improved deep reinforcement learning method is more effective than the traditional static control method.

相似文献/References:

[1]况立群,冯 利,韩 燮,等.基于双深度 Q 网络的智能决策系统研究[J].计算机技术与发展,2022,32(02):137.[doi:10. 3969 / j. issn. 1673-629X. 2022. 02. 022]
 KUANG Li-qun,FENG Li,HAN Xie,et al.Research on Intelligent Decision-making System Based on Double Deep Q-Network[J].,2022,32(08):137.[doi:10. 3969 / j. issn. 1673-629X. 2022. 02. 022]
[2]高文斌,王 睿,王田丰,等.基于深度强化学习的 QoS 感知 Web 服务组合[J].计算机技术与发展,2022,32(06):92.[doi:10. 3969 / j. issn. 1673-629X. 2022. 06. 016]
 GAO Wen-bin,WANG Rui,WANG Tian-feng,et al.QoS-aware Service Composition Based on Deep Reinforcement Learning[J].,2022,32(08):92.[doi:10. 3969 / j. issn. 1673-629X. 2022. 06. 016]
[3]詹 御,张郭健,彭麟杰,等.基于 DRL 的 MEC 卸载网络竞争窗口优化[J].计算机技术与发展,2022,32(06):99.[doi:10. 3969 / j. issn. 1673-629X. 2022. 06. 017]
 ZHAN Yu,ZHANG Guo-jian,PENG Lin-jie,et al.Optimization of Contention Window of MEC Offloading Network Based on DRL[J].,2022,32(08):99.[doi:10. 3969 / j. issn. 1673-629X. 2022. 06. 017]
[4]牟轩庭,张宏军,廖湘琳,等.规则引导的智能体决策框架[J].计算机技术与发展,2022,32(10):156.[doi:10. 3969 / j. issn. 1673-629X. 2022. 10. 026]
 MU Xuan-ting,ZHANG Hong-jun,LIAO Xiang-lin,et al.Rule-guided Agent Decision-Making Framework[J].,2022,32(08):156.[doi:10. 3969 / j. issn. 1673-629X. 2022. 10. 026]
[5]林泽阳,赖 俊,陈希亮.基于课程学习的深度强化学习研究综述[J].计算机技术与发展,2022,32(11):16.[doi:10. 3969 / j. issn. 1673-629X. 2022. 11. 003]
 LIN Ze-yang,LAI Jun,CHEN Xi-liang.An Overview of Deep Reinforcement Learning Based on Curriculum Learning[J].,2022,32(08):16.[doi:10. 3969 / j. issn. 1673-629X. 2022. 11. 003]
[6]吕相霖,臧兆祥,李思博,等.基于注意力的循环 PPO 算法及其应用[J].计算机技术与发展,2024,34(01):136.[doi:10. 3969 / j. issn. 1673-629X. 2024. 01. 020]
 LYU Xiang-lin,ZANG Zhao-xiang,LI Si-bo,et al.Attention-based Recurrent PPO Algorithm and Its Application[J].,2024,34(08):136.[doi:10. 3969 / j. issn. 1673-629X. 2024. 01. 020]
[7]龚亮亮,张 影,张俊尧,等.基于深度强化学习的任务卸载和资源分配优化[J].计算机技术与发展,2024,34(04):116.[doi:10. 3969 / j. issn. 1673-629X. 2024. 04. 018]
 GONG Liang-liang,ZHANG Ying,ZHANG Jun-yao,et al.Joint Optimization of Task Offloading and Resource Allocation Based on Deep Reinforcement Learning[J].,2024,34(08):116.[doi:10. 3969 / j. issn. 1673-629X. 2024. 04. 018]

更新日期/Last Update: 2021-08-10