[1]文 宽,王献军,王 峻,等.基于随机森林算法的电力计量大数据分析平台研究[J].计算机技术与发展,2021,31(06):216-220.[doi:10. 3969 / j. issn. 1673-629X. 2021. 06. 038]
 WEN Yao-kuan,WANG Xian-jun,WANG Jun,et al.Research on Big Data Analysis Platform for Electric Power MeasurementBased on Random Forest Algorithm[J].,2021,31(06):216-220.[doi:10. 3969 / j. issn. 1673-629X. 2021. 06. 038]
点击复制

基于随机森林算法的电力计量大数据分析平台研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
31
期数:
2021年06期
页码:
216-220
栏目:
应用前沿与综合
出版日期:
2021-06-10

文章信息/Info

Title:
Research on Big Data Analysis Platform for Electric Power MeasurementBased on Random Forest Algorithm
文章编号:
1673-629X(2021)06-0216-05
作者:
文 宽王献军王 峻苏 沛
国家电网河南省电力公司电力科学研究院,河南 郑州 450000
Author(s):
WEN Yao-kuanWANG Xian-junWANG JunSU Pei
Electric Power Research Institute,State Grid Henan Electric Power Company,Zhengzhou 450000,China
关键词:
云计算电能计量装置SP-DPP 软件平台物联网随机森林算法模型
Keywords:
cloud computingenergy metering deviceSP-DPP software platforminternet of thingsrandom forest algorithm model
分类号:
TP183
DOI:
10. 3969 / j. issn. 1673-629X. 2021. 06. 038
摘要:
针对电力计量大数据复杂、用户检索困难的问题,该研究利用随机森林算法模型,构建出基于云计算的智能电网大数据处理平台 SP-DPP( smart power system big data processing platform in cloud environment) ,并且通过物联网通讯方式实现底层设备到用户层的数据信息传递。 SP-DPP 软件平台具有较好的吞吐量与加速比,可在较短的时间内接收大量的数据,提高了数据的容纳能力。 该研究通过随机森林算法实现了大数据的训练、学习,将接收的电力数据按照用户设定的属性进行训练、学习、检索,提高了电能计量装置数据检索的准确度。 试验结果表明,该技术方案提高了数据处理能力。
Abstract:
Aiming at the problems of complex big data in power measurement and difficult user retrieval,we build SP-DPP ( smart power system big data processing platform in cloud environment) based on cloud computing with a random forest algorithm model,and realize the transfer of data information from the underlying device to the user layer through the internet of things communication. The SP-DPP,which has a better throughput and acceleration ratio,can receive a large amount of data in a short time,so as to improve the data capacity.In this study,training and learning of big data is realized by random forest algorithm. The received power data is trained,learned,and retrieved according to the attributes set by the user,which improves the accuracy of data retrieval of the energy metering device. The test shows that the proposed scheme improves the data processing ability.

相似文献/References:

[1]王茜,朱志祥,史晨昱,等.应用于数据库安全保护的加解密引擎系统[J].计算机技术与发展,2014,24(01):143.
 WANG Qian[],ZHU Zhi-xiang[],SHI Chen-yu[],et al.Encryption and Decryption Engine System Applying to Database Security and Detection[J].,2014,24(06):143.
[2]陈丹伟 黄秀丽 任勋益.云计算及安全分析[J].计算机技术与发展,2010,(02):99.
 CHEN Dan-wei,HUANG Xiu-li,REN Xun-yi.Analysis of Cloud Computing and Cloud Security[J].,2010,(06):99.
[3]孙放 陈云芳 林杭锋.适用于富客户端的云计算模型[J].计算机技术与发展,2010,(08):96.
 SUN Fang,CHEN Yun-fang,LIN Hang-feng.Cloud Computing Model Applicable to Rich Client Applications[J].,2010,(06):96.
[4]郭苑 张顺颐 孙雁飞.物联网关键技术及有待解决的问题研究[J].计算机技术与发展,2010,(11):180.
 GUO Yuan,ZHANG Shun-yi,SUN Yan-fei.Research of Key Technologies and Unresolved Questions of Internet of Things[J].,2010,(06):180.
[5]李玲娟 张敏.云计算环境下关联规则挖掘算法的研究[J].计算机技术与发展,2011,(02):43.
 LI Ling-juan,ZHANG Min.Research on Algorithms of Mining Association Rule under Cloud Computing Environment[J].,2011,(06):43.
[6]王德政 申山宏 周宁宁.云计算环境下的数据存储[J].计算机技术与发展,2011,(04):81.
 WANG De-zheng,SHEN Shan-hong,ZHOU Ning-ning.Data Storage in Cloud Computing Environment[J].,2011,(06):81.
[7]宋丽华 姜家轩 张建成 田长录 马文征.黄河三角洲云计算平台关键技术的研究[J].计算机技术与发展,2011,(06):40.
 SONG Li-hua,JIANG Jia-xuan,ZHANG Jian-cheng,et al.Research of Key Technologies of Cloud Computing of Yellow River Delta[J].,2011,(06):40.
[8]田宏伟 解福 倪俊敏.云计算环境下基于粒子群算法的资源分配策略[J].计算机技术与发展,2011,(12):22.
 TIAN Hong-wei,XIE Fu,NI Jun-min.Resource Allocation Algorithm Based on Particle Swarm Algorithm in Cloud Computing Environment[J].,2011,(06):22.
[9]张慧 邢培振.云计算环境下信息安全分析[J].计算机技术与发展,2011,(12):164.
 ZHANG Hui,XING Pei-zhen.Information Security Analysis in Cloud Computing Environment[J].,2011,(06):164.
[10]张建成[] 宋丽华[] 鹿全礼[] 郭锐[] 刘永泉[].云计算方案分析研究[J].计算机技术与发展,2012,(01):165.
 ZHANG Jian-cheng,SONG Li-hua,LU Quan-li,et al.Study and Analysis of Cloud Computing Procedure[J].,2012,(06):165.

更新日期/Last Update: 2021-06-10