[1]程换新,张志浩,刘文翰,等.基于生成对抗网络的图像识别[J].计算机技术与发展,2021,31(06):175-180.[doi:10. 3969 / j. issn. 1673-629X. 2021. 06. 031]
 CHENG Huan-xin,ZHANG Zhi-hao,LIU Wen-han,et al.Image Recognition Based on Generative Adversarial Network[J].,2021,31(06):175-180.[doi:10. 3969 / j. issn. 1673-629X. 2021. 06. 031]
点击复制

基于生成对抗网络的图像识别()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
31
期数:
2021年06期
页码:
175-180
栏目:
应用前沿与综合
出版日期:
2021-06-10

文章信息/Info

Title:
Image Recognition Based on Generative Adversarial Network
文章编号:
1673-629X(2021)06-0175-06
作者:
程换新张志浩刘文翰郭占广
青岛科技大学 自动化学院,山东 青岛 265200
Author(s):
CHENG Huan-xinZHANG Zhi-haoLIU Wen-hanGUO Zhan-guang
Qingdao University of Science and Technology,Qingdao 265200,China
关键词:
自然语言处理生成对抗网络深度学习图像识别准确性
Keywords:
natural language processinggenerative adversarial networkdeep learningimage recognitionaccuracy
分类号:
TP391
DOI:
10. 3969 / j. issn. 1673-629X. 2021. 06. 031
摘要:
随着深度学习的迅速发展,图像识别技术也在日益提高。 但在日常的人脸识别、物体识别的应用中常有识别内容错误、识别准确率过低的问题。 对此,提出了一种基于生成对抗网络的图像问答模型( GAN-QA) 。 首先生成对抗网络显示出了强大的图像识别能力,通过生成对抗网络的生成器、判别器原理可以更好地提取图像特征,显著提高了图像识别的准确率。 同时根据视觉识别的自然语言处理( NLP) 也取得了极大的提升。 该模型通过长短期记忆网络(LSTM) 将两者结合起来,通过生成对抗网络识别图像,而后问题和视觉信息被输入到长短期记忆网络中,通过模型的训练可以对图像上的问题给出答案。 在数据集 DAQUQR 上的验证结果表明,所提出的基于生成对抗网络的图像问答模型能够有效地提高对带问题图像的识别问答能力,由此明显提升了图像问答的准确度。
Abstract:
With the rapid development of deep learning,image recognition technology is also increasing. However,in the daily application of face recognition and object recognition, there are often problems of wrong recognition content and low recognition accuracy.Therefore,we propose an image question answering model ( GAN - QA) based on generative adversarial network. First of all, the generative adversarial network shows a strong image recognition capability. By generator and discriminator principle of generative adversarial network,image features can be better extracted,which significantly improves the accuracy of image recognition. At the same time,natural language processing ( NLP) based on visual recognition has also been greatly improved. The model combines the two through a long-term short-term memory network ( LSTM) . The image is recognized by generative adversarial network,and then the questions and visual information are input into the long-term and short-term memory networks. Through model training,answers to the questions on the images can be given. The verification on the data set DAQUQR shows that the proposed image question answering model based on generative adversarial networks can effectively improve the ability to identify question and answer images with questions,thereby significantly improving the accuracy of image question answering.

相似文献/References:

[1]陈国华 赵克 李亚涛 易帅.自然语言处理系统中的事件类名词的耦合处理[J].计算机技术与发展,2008,(06):60.
 CHEN Guo-hua,ZHAO Ke,LI Ya-tao,et al.Coupling Processing of Event Noun in NLP Systems[J].,2008,(06):60.
[2]程节华.基于FAQ的智能答疑系统中分词模块的设计[J].计算机技术与发展,2008,(07):181.
 CHENG Jie-hua.Design of Words Module in Intelligent Q/A System Based on FAQ[J].,2008,(06):181.
[3]杨欢 许威 赵克 陈余.动词属性在自然语言处理当中的研究与应用[J].计算机技术与发展,2008,(07):233.
 YANG Huan,XU Wei,ZHAO Ke,et al.Research and Application of Verb Attributes in Natural Language Processing[J].,2008,(06):233.
[4]孙超 张仰森.面向综合语言知识库的知识融合与获取研究[J].计算机技术与发展,2010,(08):25.
 SUN Chao,ZHANG Yang-sen.Research of Knowledge Integration and Obtaining Oriented Comprehensive Language Knowledge System[J].,2010,(06):25.
[5]党建 亿珍珍 赵克 殷鸿.数学领域集体词结构形式化处理研究[J].计算机技术与发展,2007,(05):121.
 DANG Jian,YI Zhen-zhen,ZHAO Ke,et al.Research of Formalization Processing for Collective Structures in Mathematics Domain[J].,2007,(06):121.
[6]江有福 郑庆华.自然语言网络答疑系统中倒排索引技术的研究[J].计算机技术与发展,2006,(02):126.
 JIANG You-fu,ZHENG Qing-hua.Research of Inverted Index in NLWAS[J].,2006,(06):126.
[7]刘亚清 张瑾 于纯妍.基于义原同现频率的汉语词义排歧系统[J].计算机技术与发展,2006,(05):184.
 LIU Ya-qing,ZHANG Jin,YU Chun-yan.A Chinese Word Sense Disambiguation System Based on Primitive CO- Occurrence Data[J].,2006,(06):184.
[8]刘政怡 李炜 吴建国.基于IMM—IME的汉字键盘输入法编程技术研究[J].计算机技术与发展,2006,(12):43.
 LIU Zheng-yi,LI Wei,WU Jian-guo.Research of Programming Technology of Chinese Input Method Based on IMM- IME[J].,2006,(06):43.
[9]赵鹏 何留进 孙凯 方薇[].基于情感计算的网络中文信息分析技术[J].计算机技术与发展,2010,(11):146.
 ZHAO Peng,HE Liu-jin,SUN Kai,et al.Analyzing Technologies of Internet Chinese Information Based on Affective Computing[J].,2010,(06):146.
[10]徐远方 李成城.基于SVM和词间特征的新词识别研究[J].计算机技术与发展,2012,(05):134.
 XU Yuan-fang,LI Cheng-cheng.Research on New Word Identification Based on SVM and Word Characteristics[J].,2012,(06):134.

更新日期/Last Update: 2021-06-10