[1]马媛媛,杨小军.基于多层深度特征的尺度相关粒子滤波算法[J].计算机技术与发展,2021,31(06):169-174.[doi:10. 3969 / j. issn. 1673-629X. 2021. 06. 030]
 MA Yuan-yuan,YANG Xiao-jun.A Scale Dependent Particle Filter Algorithm Based onMulti-layer Depth Characteristics[J].,2021,31(06):169-174.[doi:10. 3969 / j. issn. 1673-629X. 2021. 06. 030]
点击复制

基于多层深度特征的尺度相关粒子滤波算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
31
期数:
2021年06期
页码:
169-174
栏目:
应用前沿与综合
出版日期:
2021-06-10

文章信息/Info

Title:
A Scale Dependent Particle Filter Algorithm Based onMulti-layer Depth Characteristics
文章编号:
1673-629X(2021)06-0169-06
作者:
马媛媛杨小军
长安大学 信息工程学院,陕西 西安 710064
Author(s):
MA Yuan-yuanYANG Xiao-jun
School of Information Engineering,Chang’an University,Xi’an 710064,China
关键词:
目标跟踪粒子滤波相关滤波尺度变化卷积神经网络
Keywords:
target trackingparticle filteringcorrelation filteringscale changeconvolution neural network
分类号:
TP301. 6
DOI:
10. 3969 / j. issn. 1673-629X. 2021. 06. 030
摘要:
针对常见的视频目标跟踪算法难以适应形变以及遮挡等一些干扰场景,该文提出了一种基于多层深度特征的尺度相关粒子滤波跟踪方法。 与现有的基于相关滤波器和粒子滤波器的跟踪方法相比,该算法具有许多优点。 首先,利用区分尺度空间的跟踪器,考虑了目标对象的尺度变化,在对目标尺度估计方面表现良好。 其次,通过卷积神经网络提取目标特征,能够处理目标较大变化和防止跟踪器漂移。 最后,通过尺度相关滤波器将采样的粒子引导至目标状态分布模式,与传统的粒子滤波算法相比,该算法能够用较少的粒子有效地覆盖目标状态,具有鲁棒跟踪性能和较低的计算成本。 通过在具有挑战性的基准数据集上的大量实验表明,该跟踪算法与现有的一些跟踪算法相比具有良好的性能。
Abstract:
In view of the difficulty of common video target tracking algorithms to adapt to some disturbing scenes such as deformation and occlusion,we propose a scale-dependent particle filter tracking method based on multi-layer depth characteristics. Compared with the existing tracking methods based on correlation filter and particle filter,the proposed algorithm has many advantages. Firstly,by using the scale-space discriminating tracker,the scale variation of the target object is taken into account,which performs well in the estimation of the target scale. Secondly,by using the convolutional neural network to extract the target features,the large change of the target can be processed and the tracker drift can be prevented. Finally,the sampled particles are guided to the target state distribution mode by the scale correlation filter. Compared with the traditional particle filter algorithm,the proposed algorithm can effectively cover the target state with fewer particles, and has robust tracking performance and lower computational cost. A large number of experiments on challenging benchmark data sets show that the proposed algorithm has better performance than some existing tracking algorithms.

相似文献/References:

[1]卢笑 孟正大.陪护机器人粒子滤波定位法中重采样算法研究[J].计算机技术与发展,2010,(04):54.
 LU Xiao,MENG Zheng-da.Research of Particle Filter Resampling Algorithm in Indoor Service Robot Localization[J].,2010,(06):54.
[2]刘翔 吴谨 祝愿博 康晓晶.基于视频序列的目标检测与跟踪技术研究[J].计算机技术与发展,2009,(11):179.
 LIU Xiang,WU Jin,ZHU Yuan-bo,et al.A Study of Object Detecting and Tracking Based on Video Sequences[J].,2009,(06):179.
[3]雷云 王夏黎 孙华.基于视频的交通目标跟踪方法研究[J].计算机技术与发展,2010,(07):44.
 LEI Yun,WANG Xia-li,SUN Hua.The Research about Transport Target Tracking Based on Video[J].,2010,(06):44.
[4]谢之宇 蒋晓瑜 汪熙 裴闯.基于多线索融合的目标跟踪算法研究[J].计算机技术与发展,2011,(03):125.
 XIE Zhi-yu,JIANG Xiao-yu,WANG Xi,et al.A Target Tracking Algorithm Research Based on Multi-Cue Fusion[J].,2011,(06):125.
[5]尤天来 周海徽[].红外目标跟踪技术研究[J].计算机技术与发展,2011,(10):140.
 YOU Tian-lai,ZHOU Hai-hui.Research of Infrared Target Tracking Technology[J].,2011,(06):140.
[6]龙凤 薛冬林 陈桂明 杨庆.基于粒子滤波与线性自回归的故障预测算法[J].计算机技术与发展,2011,(11):133.
 LONG Feng,XUE Dong-lin,CHEN Gui-ming,et al.Fault Prediction Algorithm Based on Particle Filter and Linear Autoregressive Models[J].,2011,(06):133.
[7]赵侃 漆德宁.基于UKF滤波的FDOA和TDOA联合定位跟踪算法[J].计算机技术与发展,2012,(05):127.
 ZHAO Kan,QI De-ning.A Tracking TDOA/FDOA Joint Location Algorithm Based on UKF[J].,2012,(06):127.
[8]姚放吾 许辰铭.基于目标质心的Meanshift跟踪算法[J].计算机技术与发展,2012,(06):104.
 YAO Fang-wu,XU Chen-ming.A Meanshift Tracking Algorithm Based on Centroid[J].,2012,(06):104.
[9]陈延利 施永豪.运动目标检测与跟踪的DSP实现[J].计算机技术与发展,2012,(08):82.
 CHEN Yan-li,SHI Yong-hao.DSP Realization of Detection and Tracking for Moving Objects[J].,2012,(06):82.
[10]张璐,张国良,张维平,等.改进IMM算法在机器人目标跟踪中的应用[J].计算机技术与发展,2013,(02):149.
 ZHANG Lu,ZHANG Guo-liang,ZHANG Wei-ping,et al.Application of Improved IMM Algorithm in Robot Target Tracking[J].,2013,(06):149.
[11]雷飞,孟晓琼,吕露,等. 基于改进的均值漂移算法的运动汽车跟踪[J].计算机技术与发展,2017,27(02):106.
 LEI Fei,MENG Xiao-qiong,LYU Lu,et al. Moving Vehicle Tracking Based on Improved Mean Shift[J].,2017,27(06):106.
[12]刘少林,朱文球,孙文静,等.基于联合直方图的自适应粒子滤波跟踪算法[J].计算机技术与发展,2018,28(06):106.[doi:10.3969/ j. issn.1673-629X.2018.06.024]
 LIU Shao-lin,ZHU Wen-qiu,SUN Wen-jing,et al.An Adaptive Particle Filtering and Tracking Algorithm Based on Joint Histogram[J].,2018,28(06):106.[doi:10.3969/ j. issn.1673-629X.2018.06.024]
[13]闾斯瑶,周武能,李龙龙.基于 SAGBA 优化粒子滤波的目标跟踪[J].计算机技术与发展,2020,30(03):36.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 007]
 LYU Si-yao,ZHOU Wu-neng,LI Long-long.Target Tracking Based on SAGBA Optimized Particle Filter[J].,2020,30(06):36.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 007]
[14]李 敏,吴 莎.基于深度学习的粒子滤波视频目标跟踪算法[J].计算机技术与发展,2020,30(06):23.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 005]
 LI Min,WU Sha.Particle Filter Video Target Tracking Algorithm Based on Deep Learning[J].,2020,30(06):23.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 005]

更新日期/Last Update: 2021-06-10