[1]鲁 欢,郭永安,陈春玲.基于 NDN 的区分调度提升树转发策略研究[J].计算机技术与发展,2021,31(06):101-105.[doi:10. 3969 / j. issn. 1673-629X. 2021. 06. 018]
 LU Huan,GUO Yong-an,CHEN Chun-ling.Research on Diffserv Dispatch Boosting Decision Tree ForwardingStrategy Based on NDN[J].,2021,31(06):101-105.[doi:10. 3969 / j. issn. 1673-629X. 2021. 06. 018]
点击复制

基于 NDN 的区分调度提升树转发策略研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
31
期数:
2021年06期
页码:
101-105
栏目:
网络与安全
出版日期:
2021-06-10

文章信息/Info

Title:
Research on Diffserv Dispatch Boosting Decision Tree ForwardingStrategy Based on NDN
文章编号:
1673-629X(2021)06-0101-05
作者:
鲁 欢郭永安陈春玲
南京邮电大学 计算机学院、软件学院、网络空间安全学院,江苏 南京 210023
Author(s):
LU HuanGUO Yong-anCHEN Chun-ling
School of Computer Technology,Nanjing University of Posts and Telecommunications,Nanjing 210023,China
关键词:
车联网命名数据网络转发策略区分调度提升树
Keywords:
IoVnamed data networkingforwarding strategydiffserv dispatchboosting decision tree
分类号:
TP301. 6
DOI:
10. 3969 / j. issn. 1673-629X. 2021. 06. 018
摘要:
针对基于命名数据网络的转发策略存在网络拥塞、高延时以及转发命中率低的问题,提出一种区分调度提升树转发策略。 将兴趣包进行服务类型和紧急度分类,使用加权循环调度算法对数据包优先级排序,生成优先级队列;针对端口信息、节点内缓存、兴趣包热度等属性进行决策,生成提升树,选择最优端口进行数据转发。 使用 SUMO 软件设计真实道路车辆信息,利用 ndnSIM 软件进行仿真实验,结果表明:使用区分调度提升树转发策略,能使兴趣包满足率相较于智能泛洪转发策略提升 8. 9% ,平均时延降低 25 ms;相较于 BREB 转发策略提升 5. 1% ,平均时延降低 14. 6 ms。 区分调度提升树转发策略能缓解网络的拥塞,更好地适应车联网拓扑的动态变化,能充分利用车辆节点内的缓存信息,提供更高效的车辆服务。
Abstract:
Aiming at the problems of network congestion, high latency and low forwarding hit rate in forwarding strategies based on named data networks,a diffserv dispatch boosting decision tree forwarding strategy? ? ?is proposed. The interest packets are classified by service type and urgency,the weighted round-robin scheduling algorithm is used to prioritize data packets and generate priority queues.The decisions are made based on attributes such as port information,node cache,interest packet popularity,etc. ,the promotion tree is generated,and the best optimal port is selected for data forwarding. The SUMO software is used to design real road vehicle information,and ndnSIM software to conduct simulation experiments. The results show that the use of diffserv dispatch boosting decision tree for warding strategy can increase the satisfaction rate of interest packets by 8. 9% compared with the smart flooding forwarding strategy,and reduce the average delay by 25 ms. Compared with the BREB forwarding strategy,the average delay is reduced by 5. 1% and the average delay is reduced by 14. 6 ms. Diffserv dispatch boosting decision tree forwarding strategy can alleviate network congestion,better adapt to the dynamic changes of the internet of vehicles topology,and can fully utilize the cached information in the vehicle node to provide more efficient vehicle services.

相似文献/References:

[1]王建强 李世威 曾俊伟.车联网发展模式探析[J].计算机技术与发展,2011,(12):235.
 WANG Jian-qiang,LI Shi-wei,ZENG Jun-wei.Analysis of Development Model of Internet of Vehicles[J].,2011,(06):235.
[2]于明鹭,刘南杰,赵海涛,等. 基于车联网的智能打车系统[J].计算机技术与发展,2016,26(02):118.
 YU Ming-lu,LIU Nan-jie,ZHAO Hai-tao,et al. Intelligent Taxi Service System Based on Internet of Vehicle[J].,2016,26(06):118.
[3]庞立君,廖春伟,黄波,等. 基于GID的车联网数据安全方案[J].计算机技术与发展,2016,26(04):101.
 PANG Li-jun,LIAO Chun-wei,HUANG Bo,et al. Data Security Scheme of IOV Based on GID[J].,2016,26(06):101.
[4]杨济瑞,赵海涛,刘南杰. 改进的三次指数平滑法及其在车联网中的应用[J].计算机技术与发展,2016,26(11):164.
 YANG Ji-rui,ZHAO Hai-tao,LIU Nan-jie. Modified Cubic Exponential Smoothing Algorithm and Its Application on IoV[J].,2016,26(06):164.
[5]韩家群,刘南杰,黄波,等. 基于车联网大数据的UBI系统研究[J].计算机技术与发展,2016,26(12):26.
 HAN Jia-qun,LIU Nan-jie,HUANG Bo,et al. Research on UBI System Based on Big Data in IOV[J].,2016,26(06):26.
[6]汤媛媛,朱琦,胡晗.基于内容及留存时间的VANETs转发策略[J].计算机技术与发展,2019,29(04):116.[doi:10. 3969 / j. issn. 1673-629X. 2019. 04. 024]
 TANG Yuan-yuan,ZHU Qi,HU Han.A VANETs Forwarding Strategy Based on Content and Retention Time[J].,2019,29(06):116.[doi:10. 3969 / j. issn. 1673-629X. 2019. 04. 024]
[7]宋冬冬,王 楠,田树耀,等.基于聚类算法的车辆数据挖掘及可视化研究[J].计算机技术与发展,2020,30(10):204.[doi:10. 3969 / j. issn. 1673-629X. 2020. 10. 036]
 SONG Dong-dong,WANG Nan,TIAN Shu-yao,et al.Research on Vehicle Data Mining and Visualization Based on Clustering Algorithm[J].,2020,30(06):204.[doi:10. 3969 / j. issn. 1673-629X. 2020. 10. 036]
[8]黄姝娟,肖 锋*,曹子建.智能小车联网组队方法的设计与实现[J].计算机技术与发展,2021,31(04):170.[doi:10. 3969 / j. issn. 1673-629X. 2021. 04. 029]
 HUANG Shu-juan,XIAO Feng*,CAO Zi-jian.Design and Implementation of Formation Method for Intelligent Vehicles[J].,2021,31(06):170.[doi:10. 3969 / j. issn. 1673-629X. 2021. 04. 029]
[9]王润民,卢 涛,宋晓鹏,等.不可靠通信条件下的 CACC 纵向控制仿真分析[J].计算机技术与发展,2021,31(07):152.[doi:10. 3969 / j. issn. 1673-629X. 2021. 07. 025]
 WANG Run-min,LU Tao,SONG Xiao-peng,et al.Simulation Analysis of Longitudinal Control of CACC underUnreliable Communication[J].,2021,31(06):152.[doi:10. 3969 / j. issn. 1673-629X. 2021. 07. 025]
[10]沈大港,范鹏飞,周慧娟,等.面向车联网基于边缘计算的点对点信息传输[J].计算机技术与发展,2021,31(08):139.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 024]
 SHEN Da-gang,FAN Peng-fei,ZHOU Hui-juan,et al.Point-to-point Information Communication Based on Edge Computing for Internet of Vehicle[J].,2021,31(06):139.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 024]

更新日期/Last Update: 2021-06-10