相似文献/References:
[1]李 勇,刘战东,张海军.跨项目软件缺陷预测方法研究综述[J].计算机技术与发展,2020,30(03):98.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 019]
LI Yong,LIU Zhan-dong,ZHANG Hai-jun.Review on Cross-project Software Defects Prediction Methods[J].,2020,30(06):98.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 019]
[2]武苏雯,赵慧杰,刘 鑫,等.基于迁移学习的图像分类在诗词中的应用研究[J].计算机技术与发展,2021,31(07):215.[doi:10. 3969 / j. issn. 1673-629X. 2021. 07. 036]
WU Su-wen,ZHAO Hui-jie,LIU Xin,et al.Research on Application of Image Classification Based onTransfer Learning in Poetry[J].,2021,31(06):215.[doi:10. 3969 / j. issn. 1673-629X. 2021. 07. 036]
[3]娄丰鹏,吴迪,荆晓远,等.增加度量元的迁移学习跨项目软件缺陷预测[J].计算机技术与发展,2018,28(07):103.[doi:10.3969/ j. issn.1673-629X.2018.07.022]
LOU Feng-peng,WU Di,JING Xiao-yuan,et al.Cross-project Software Defect Prediction Based on Transfer Learning with Metrics[J].,2018,28(06):103.[doi:10.3969/ j. issn.1673-629X.2018.07.022]
[4]刘宇廷,倪颖杰.融合知识迁移学习的微博社团检测模型构建[J].计算机技术与发展,2018,28(09):11.[doi:10.3969/j.issn.1673-629X.2018.09.003]
LIU Yu-ting,NI Ying-jie.Construction of Weibo Community Detection Model with Knowledge Transfer Learning[J].,2018,28(06):11.[doi:10.3969/j.issn.1673-629X.2018.09.003]
[5]王泽泓,刘厚泉.基于迁移学习与自适应特征融合的建筑物识别[J].计算机技术与发展,2019,29(12):40.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 007]
WANG Ze-hong,LIU Hou-quan.Building Recognition Based on Transfer Learning and Adaptive Feature Fusion[J].,2019,29(06):40.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 007]
[6]易 未,郑沫利,赵艳轲,等.基于小样本 SVR 的迁移学习及其应用[J].计算机技术与发展,2020,30(02):47.[doi:10. 3969 / j. issn. 1673-629X. 2020. 02. 010]
YI Wei,ZHENG Mo-li,ZHAO Yan-ke,et al.Transfer Learning Based on Support Vector Regression Model for Small Sample Data and Its Applications[J].,2020,30(06):47.[doi:10. 3969 / j. issn. 1673-629X. 2020. 02. 010]
[7]康嘉钰,苏凡军.基于生成对抗网络的长短兴趣推荐模型[J].计算机技术与发展,2020,30(06):35.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 007]
KANG Jia-yu,SU Fan-jun.A Long-short-term Interests Recommendation Model Based on Generative Adversarial Networks[J].,2020,30(06):35.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 007]
[8]王新美,丁爱玲,雷梦宁,等.基于 CNN 和 SVM 融合的交通标志识别[J].计算机技术与发展,2020,30(06):7.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 002]
WANG Xin-mei,DING Ai-ling,LEI Meng-ning,et al.Traffic Sign Recognition Based on Combination of CNN and SVM[J].,2020,30(06):7.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 002]
[9]蒋文杰,罗晓曙*,戴沁璇.一种改进的生成对抗网络的图像上色方法研究[J].计算机技术与发展,2020,30(07):56.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 013]
JIANG Wen-jie,LUO Xiao-shu*,DAI Qin-xuan.Research on an Improved Method of Generative Adversarial Networks Image Coloring[J].,2020,30(06):56.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 013]
[10]龚 安,井晓萌.多卷积神经网络模型融合的农作物病害图像识别[J].计算机技术与发展,2020,30(08):134.[doi:10. 3969 / j. issn. 1673-629X. 2020. 08. 023]
GONG An,JING Xiao-meng.Image Recognition of Crop Diseases Based on Multi-convolution Neural Network Model Ensemble[J].,2020,30(06):134.[doi:10. 3969 / j. issn. 1673-629X. 2020. 08. 023]