[1]苑金辉,乔 艳,费烨琳,等.基于深度迁移学习的心脏 MRI 图像左心室分割[J].计算机技术与发展,2021,31(06):35-39.[doi:10. 3969 / j. issn. 1673-629X. 2021. 06. 007]
 YUAN Jin-hui,QIAO Yan,FEI Ye-lin,et al.Left Ventricular Segmentation in Cardiac MRI Images Based onDeep Transfer Learning[J].,2021,31(06):35-39.[doi:10. 3969 / j. issn. 1673-629X. 2021. 06. 007]
点击复制

基于深度迁移学习的心脏 MRI 图像左心室分割()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
31
期数:
2021年06期
页码:
35-39
栏目:
图形与图像
出版日期:
2021-06-10

文章信息/Info

Title:
Left Ventricular Segmentation in Cardiac MRI Images Based onDeep Transfer Learning
文章编号:
1673-629X(2021)06-0035-05
作者:
苑金辉1 乔 艳2 费烨琳2 胡晓飞2
1. 南京邮电大学 通信与信息工程学院,江苏 南京 210003;
2. 南京邮电大学 地理与生物信息学院,江苏 南京 210003
Author(s):
YUAN Jin-hui1 QIAO Yan2 FEI Ye-lin2 HU Xiao-fei2
1. School of Communication and Information Engineering,Nanjing University of Posts and Telecommunications, Nanjing 210003,China;
2. School of Geography and Bioinformatics,Nanjing University of Posts and Telecommunications,? ? ?Nanjing 210003,China
关键词:
迁移学习生成对抗网络心脏 MRI左心室分割多尺度
Keywords:
transfer learninggenerative adversarial networkscardiac MRIleft ventricular segmentationmultiscale
分类号:
TP301
DOI:
10. 3969 / j. issn. 1673-629X. 2021. 06. 007
摘要:
在研究基于深度学习的左心室分割方法时,需要足够的有标注的图像,才能获得准确的分割结果,而有标注的左心室图像往往难以获得。因此,提出了一种基于迁移学习和多尺度判别的生成对抗网络(TLMDB GAN) 的 MRI 左心室图像分割方法,解决心室图像数据不足的问题。 模型包含一个分割网络和一个判别网络。 分割网络? ? ?(TLBSN) 使用全卷积神经网络,利用迁移学习逐层微调辅助分割,判别网络是一个多尺度的判别网络,监督生成网络更好地学习图像的特征信息。 实验结果表明,基于多伦多市儿童病医院影像科提供的数据集对左心室内膜和外膜分割 Dice 相似系数分别为 0. 939 9和 0. 969 7。 对比其他分割模型,该模型明显提高了分割精度。
Abstract:
In the study of left ventricular segmentation based on deep learning,sufficient labeled images are needed? to obtain accurate segmentation results,while labeled left ventricular images are often difficult to obtain. Therefore,a left ventricular MRI image segmentation method based on transfer learning and generation confrontation network is proposed to solve the problem of insufficient ventricular image data. The model consists of a segmentation network and a discrimination network. The segmentation network uses the full convolution neural network and the transfer learning to fine-tune the auxiliary segmentation layer by layer. The discriminant network is a multi-scale discriminant network,and the supervised generation network can learn the feature information of the image better. The experiment show that the Dice similarity coefficients of left ventricular endocardium and epicardium segmentation are 0. 939 9 and 0. 969 7,respectively,based on the data set provided by the Imaging Department of Sick Children’s Hospital of Toronto. Compared with other models,the proposed model has significantly improved the segmentation accuracy.

相似文献/References:

[1]李 勇,刘战东,张海军.跨项目软件缺陷预测方法研究综述[J].计算机技术与发展,2020,30(03):98.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 019]
 LI Yong,LIU Zhan-dong,ZHANG Hai-jun.Review on Cross-project Software Defects Prediction Methods[J].,2020,30(06):98.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 019]
[2]武苏雯,赵慧杰,刘 鑫,等.基于迁移学习的图像分类在诗词中的应用研究[J].计算机技术与发展,2021,31(07):215.[doi:10. 3969 / j. issn. 1673-629X. 2021. 07. 036]
 WU Su-wen,ZHAO Hui-jie,LIU Xin,et al.Research on Application of Image Classification Based onTransfer Learning in Poetry[J].,2021,31(06):215.[doi:10. 3969 / j. issn. 1673-629X. 2021. 07. 036]
[3]娄丰鹏,吴迪,荆晓远,等.增加度量元的迁移学习跨项目软件缺陷预测[J].计算机技术与发展,2018,28(07):103.[doi:10.3969/ j. issn.1673-629X.2018.07.022]
 LOU Feng-peng,WU Di,JING Xiao-yuan,et al.Cross-project Software Defect Prediction Based on Transfer Learning with Metrics[J].,2018,28(06):103.[doi:10.3969/ j. issn.1673-629X.2018.07.022]
[4]刘宇廷,倪颖杰.融合知识迁移学习的微博社团检测模型构建[J].计算机技术与发展,2018,28(09):11.[doi:10.3969/j.issn.1673-629X.2018.09.003]
 LIU Yu-ting,NI Ying-jie.Construction of Weibo Community Detection Model with Knowledge Transfer Learning[J].,2018,28(06):11.[doi:10.3969/j.issn.1673-629X.2018.09.003]
[5]王泽泓,刘厚泉.基于迁移学习与自适应特征融合的建筑物识别[J].计算机技术与发展,2019,29(12):40.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 007]
 WANG Ze-hong,LIU Hou-quan.Building Recognition Based on Transfer Learning and Adaptive Feature Fusion[J].,2019,29(06):40.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 007]
[6]易 未,郑沫利,赵艳轲,等.基于小样本 SVR 的迁移学习及其应用[J].计算机技术与发展,2020,30(02):47.[doi:10. 3969 / j. issn. 1673-629X. 2020. 02. 010]
 YI Wei,ZHENG Mo-li,ZHAO Yan-ke,et al.Transfer Learning Based on Support Vector Regression Model for Small Sample Data and Its Applications[J].,2020,30(06):47.[doi:10. 3969 / j. issn. 1673-629X. 2020. 02. 010]
[7]康嘉钰,苏凡军.基于生成对抗网络的长短兴趣推荐模型[J].计算机技术与发展,2020,30(06):35.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 007]
 KANG Jia-yu,SU Fan-jun.A Long-short-term Interests Recommendation Model Based on Generative Adversarial Networks[J].,2020,30(06):35.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 007]
[8]王新美,丁爱玲,雷梦宁,等.基于 CNN 和 SVM 融合的交通标志识别[J].计算机技术与发展,2020,30(06):7.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 002]
 WANG Xin-mei,DING Ai-ling,LEI Meng-ning,et al.Traffic Sign Recognition Based on Combination of CNN and SVM[J].,2020,30(06):7.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 002]
[9]蒋文杰,罗晓曙*,戴沁璇.一种改进的生成对抗网络的图像上色方法研究[J].计算机技术与发展,2020,30(07):56.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 013]
 JIANG Wen-jie,LUO Xiao-shu*,DAI Qin-xuan.Research on an Improved Method of Generative Adversarial Networks Image Coloring[J].,2020,30(06):56.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 013]
[10]龚 安,井晓萌.多卷积神经网络模型融合的农作物病害图像识别[J].计算机技术与发展,2020,30(08):134.[doi:10. 3969 / j. issn. 1673-629X. 2020. 08. 023]
 GONG An,JING Xiao-meng.Image Recognition of Crop Diseases Based on Multi-convolution Neural Network Model Ensemble[J].,2020,30(06):134.[doi:10. 3969 / j. issn. 1673-629X. 2020. 08. 023]

更新日期/Last Update: 2021-06-10