[1]潘理虎,郝彦杰,周耀辉,等.基于文本卷积的多因素煤炭产品推荐模型[J].计算机技术与发展,2021,31(04):198-203.[doi:10. 3969 / j. issn. 1673-629X. 2021. 04. 034]
 PAN Li-hu,HAO Yan-jie,ZHOU Yao-hui,et al.Multi Factor Coal Product Recommendation Model Based onText Convolution[J].,2021,31(04):198-203.[doi:10. 3969 / j. issn. 1673-629X. 2021. 04. 034]
点击复制

基于文本卷积的多因素煤炭产品推荐模型()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
31
期数:
2021年04期
页码:
198-203
栏目:
应用前沿与综合
出版日期:
2021-04-10

文章信息/Info

Title:
Multi Factor Coal Product Recommendation Model Based onText Convolution
文章编号:
1673-629X(2021)04-0198-06
作者:
潘理虎1 郝彦杰1 周耀辉2 龚大立3
1. 太原科技大学 计算机科学与技术学院,山西 太原 030024;
2. 山西省华晋焦煤集团,山西 吕梁 033300;
3. 精英数智科技股份有限公司,山西 太原 03002
Author(s):
PAN Li-hu1 HAO Yan-jie1 ZHOU Yao-hui2 GONG Da-li3
1. School of Computer and Technology,Taiyuan University of Science and Technology,Taiyuan 030024,China;
2. Huajin Coking Coal Group of Shanxi Province,Lvliang 033300,China;
3. Jingying Shuzhi Technology Co. ,Ltd. ,Taiyuan 030024,China
关键词:
自然语言处理词嵌入文本卷积特征矩阵评分预测
Keywords:
natural language processingword embeddingtext convolutionfeature matrixscore prediction
分类号:
TP391
DOI:
10. 3969 / j. issn. 1673-629X. 2021. 04. 034
摘要:
为了向需求维度不同的买家科学地提供基于煤炭产品自身品质及其发售地区差异性推荐意见,文中提出了一种基于卷积神经网络与自然语言处理相结合的文本卷积推荐模型? (text CNN recommendation model,TCRM)。 该模型由各字段单词特征生成嵌入向量,在不同尺寸的卷积核上做卷积和最大池化,再通过全连接层合并所有特征分别得出用户及煤炭产品特征矩阵,将用户特征和煤炭产品特征作为输入,经过全连接的方式进行计算以产生评分预测值。 在特征矩阵维数为 32,经过 20 次迭代后模型损失固定在 1. 0 附近,准确率维持在 0. 25 左右,在模型损失率及健壮性上均优于传统数值比例特征运算计算评分时的模型。 这样的推荐方式改善了以往由于单因素评分而带来的近邻相似度计算不准确和矩阵稀疏导致的推荐结果不理想的情况。 在大量真实数据集上的实验结果显示,在此算法基础上的深层次煤炭产品推荐具有良好的效果。
Abstract:
In order to provide scientific recommendations for buyers with different demand dimensions based on the quality of coal products and the differences in their selling areas, we propose a text CNN recommendation model (TCRM) based on the combination of convolution neural network and natural language processing. In this model, the embedded vector is generated from the word features of each field, convolution and maximum pooling are done on convolution kernels of different sizes,? and then the user and coal product feature matrix are obtained by combining all features in the full connection layer. The user feature and coal product feature are used as input and calculated in a fully connected way to generate the predicted score. After 20 iterations,when feature matrix dimension is 32,themodel loss is fixed near 1. 0,and the accuracy is maintained at about 0. 25. The model loss rate and robustness are better than those of the traditional numerical scale feature calculation model. This kind of recommendation method improves the previous situation that the calculation of neighbor similarity is not accurate and the result of recommendation is not ideal because of the single factor score. The experimental results on a large number of real datasets show that the deep level coal product recommendation based on this algorithm is effective.

相似文献/References:

[1]陈国华 赵克 李亚涛 易帅.自然语言处理系统中的事件类名词的耦合处理[J].计算机技术与发展,2008,(06):60.
 CHEN Guo-hua,ZHAO Ke,LI Ya-tao,et al.Coupling Processing of Event Noun in NLP Systems[J].,2008,(04):60.
[2]程节华.基于FAQ的智能答疑系统中分词模块的设计[J].计算机技术与发展,2008,(07):181.
 CHENG Jie-hua.Design of Words Module in Intelligent Q/A System Based on FAQ[J].,2008,(04):181.
[3]杨欢 许威 赵克 陈余.动词属性在自然语言处理当中的研究与应用[J].计算机技术与发展,2008,(07):233.
 YANG Huan,XU Wei,ZHAO Ke,et al.Research and Application of Verb Attributes in Natural Language Processing[J].,2008,(04):233.
[4]孙超 张仰森.面向综合语言知识库的知识融合与获取研究[J].计算机技术与发展,2010,(08):25.
 SUN Chao,ZHANG Yang-sen.Research of Knowledge Integration and Obtaining Oriented Comprehensive Language Knowledge System[J].,2010,(04):25.
[5]党建 亿珍珍 赵克 殷鸿.数学领域集体词结构形式化处理研究[J].计算机技术与发展,2007,(05):121.
 DANG Jian,YI Zhen-zhen,ZHAO Ke,et al.Research of Formalization Processing for Collective Structures in Mathematics Domain[J].,2007,(04):121.
[6]江有福 郑庆华.自然语言网络答疑系统中倒排索引技术的研究[J].计算机技术与发展,2006,(02):126.
 JIANG You-fu,ZHENG Qing-hua.Research of Inverted Index in NLWAS[J].,2006,(04):126.
[7]刘亚清 张瑾 于纯妍.基于义原同现频率的汉语词义排歧系统[J].计算机技术与发展,2006,(05):184.
 LIU Ya-qing,ZHANG Jin,YU Chun-yan.A Chinese Word Sense Disambiguation System Based on Primitive CO- Occurrence Data[J].,2006,(04):184.
[8]刘政怡 李炜 吴建国.基于IMM—IME的汉字键盘输入法编程技术研究[J].计算机技术与发展,2006,(12):43.
 LIU Zheng-yi,LI Wei,WU Jian-guo.Research of Programming Technology of Chinese Input Method Based on IMM- IME[J].,2006,(04):43.
[9]赵鹏 何留进 孙凯 方薇[].基于情感计算的网络中文信息分析技术[J].计算机技术与发展,2010,(11):146.
 ZHAO Peng,HE Liu-jin,SUN Kai,et al.Analyzing Technologies of Internet Chinese Information Based on Affective Computing[J].,2010,(04):146.
[10]徐远方 李成城.基于SVM和词间特征的新词识别研究[J].计算机技术与发展,2012,(05):134.
 XU Yuan-fang,LI Cheng-cheng.Research on New Word Identification Based on SVM and Word Characteristics[J].,2012,(04):134.
[11]黄 鹤,荆晓远,董西伟,等.基于 Skip-gram 的 CNNs 文本邮件分类模型[J].计算机技术与发展,2019,29(06):143.[doi:10. 3969 / j. issn. 1673-629X. 2019. 06. 030]
 HUANG He,JING Xiao-yuan,DONG Xi-wei,et al.CNNs-Highway Text Message Classification Model Based on Skip-gram[J].,2019,29(04):143.[doi:10. 3969 / j. issn. 1673-629X. 2019. 06. 030]

更新日期/Last Update: 2020-04-10