[1]张铠翔,姜文刚.FastSLAM 算法的仿生优化改进研究[J].计算机技术与发展,2021,31(04):8-13.[doi:10. 3969 / j. issn. 1673-629X. 2021. 04. 002]
 ZHANG Kai-xiang,JIANG Wen-gang.Study on Improvement of Bionic Optimization of FastSLAM Algorithm[J].,2021,31(04):8-13.[doi:10. 3969 / j. issn. 1673-629X. 2021. 04. 002]
点击复制

FastSLAM 算法的仿生优化改进研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
31
期数:
2021年04期
页码:
8-13
栏目:
人工智能
出版日期:
2021-04-10

文章信息/Info

Title:
Study on Improvement of Bionic Optimization of FastSLAM Algorithm
文章编号:
1673-629X(2021)04-0008-06
作者:
张铠翔姜文刚
江苏科技大学 电子信息学院,江苏 镇江 212000
Author(s):
ZHANG Kai-xiangJIANG Wen-gang
School of Electronic Information,Jiangsu University of Science and Technology,Zhenjiang 212000,China
关键词:
快速同步定位与地图构建算法蝴蝶算法粒子滤波分布重采样预测精度
Keywords:
fast simultaneous localization and mapping algorithm butterfly algorithm particle filtering distribution resamplingpredictive accuracy
分类号:
TP242. 6
DOI:
10. 3969 / j. issn. 1673-629X. 2021. 04. 002
摘要:
针对机器人导航标准的快速同步定位与地图构建算法( FastSLAM) 在重采样过程中存在采样粒子集的贫化以及粒子多样性的缺失导致机器人的定位与建图的精度下降的问题,提出一种基于改进的蝴蝶算法来优化 FastSLAM 中的粒子滤波部分。 改进的算法将机器人的最新时刻的观测和状态信息融入到蝴蝶算法的香味公式中,并在蝴蝶位置更新的过程加入自适应香味半径和自适应蝴蝶飞行调整步长因子,来减少算法的运算时间以及提高预测精度,同时引入偏差修正指数加权算法对粒子的权值进行优化组合,对组合后部分不稳定的粒子进行分布重采样,保证粒子的多样性。 通过仿真验证了该算法在估计精度与稳定性方面优于 FastSLAM,因此在移动机器人运动模型的定位与建图中具有较高的定位精度与稳定性。
Abstract:
In the process of resampling, the fast simultaneous localization and mapping algorithm of robot navigation standard( FastSLAM) has problems such as the dilution of sampling particle set and the lack of particle diversity,which leads to the decrease ofrobot localization and map construction accuracy. Therefore,we propose an improved butterfly algorithm to optimize the particle filteringin FastSLAM. The improved algorithm integrates the latest observation and state information of the robot into the fragrance formula of thebutterfly algorithm,and adds the adaptive fragrance radius and the adaptive butterfly flight adjustment step factor in the process ofupdating the butterfly position to reduce the operation time of the algorithm and improve the pre-operation the measurement accuracy. Atthe same time,the deviation correction index weighting algorithm is introduced to optimize the combination of the weights of particles,and the distribution resampling of some unstable particles after the combination is carried out to ensure the diversity of particles.Simulation results show that the proposed algorithm is superior to FastSLAM in terms of estimation accuracy and stability,so it has higherpositioning accuracy and stability in mobile robot motion model.
更新日期/Last Update: 2020-04-10