[1]周亦敏,黄 俊.基于 BERT 的学术合作者推荐研究[J].计算机技术与发展,2021,31(03):45-51.[doi:10. 3969 / j. issn. 1673-629X. 2021. 03. 008]
 ZHOU Yi-min,HUANG Jun.Research on BERT-based Academic Collaborator Recommendation[J].,2021,31(03):45-51.[doi:10. 3969 / j. issn. 1673-629X. 2021. 03. 008]
点击复制

基于 BERT 的学术合作者推荐研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
31
期数:
2021年03期
页码:
45-51
栏目:
大数据分析与挖掘
出版日期:
2021-03-10

文章信息/Info

Title:
Research on BERT-based Academic Collaborator Recommendation
文章编号:
1673-629X(2021)03-0045-07
作者:
周亦敏黄 俊
上海理工大学 光电信息与计算机工程学院,上海 200093
Author(s):
ZHOU Yi-minHUANG Jun
School of Optical-electrical & Computer Engineering,University of Shanghai for Science & Technology, Shanghai 200093,China
关键词:
BERT 模型合作者推荐逻辑回归模型学术数据挖掘Network Embedding
Keywords:
BERT modelcollaborator recommendationlogistic regression modelacademic data miningNetwork Embedding
分类号:
TP391
DOI:
10. 3969 / j. issn. 1673-629X. 2021. 03. 008
摘要:
学术合作者推荐是学术大数据的一个有效应用。 但是现存的方法忽略了学术研究者和研究主题间的上下文关系,因此不能推荐合适的合作者。 该文提出了基于 BERT 的合作者推荐(BACR),旨在推荐高潜力的合作者以达到研究者的要求。为此, 设计了一个新的推荐框架, 它有两个基本组成部分: BERT (bidirectional encoder representa-tions from transformers)预训练语言模型和逻辑回归模型(LR)。 其中,BERT 将研究者和研究主题联合表示得到句子层面的具有上下文关系的特征向量表示。 LR 将 BERT 输出的特征向量作为输入得到该样本为正类的概率,最后输出概率最大的前 K 个合作者信息。 通过与基于 Network Embedding 的 SDNE 和 TSE 算法的对比实验,结果表明充分考虑了研究者和研究主题间的上下文关系的 BERT 模型得到了更好的特征向量表示,提高了合作者推荐的准确率。
Abstract:
Academic collaborator recommendation is an effective application of academic big data. However,existing methods ignore the contextual relationship between academic researchers and research topics, therefore? they cannot recommend suitable collaborators. We propose the BERT-based collaborator recommendation (BACR),which aims to recommend high-potential collaborators to meet the requirements of researchers. To this end,we design a new recommendation framework,which consists of two basic components:BERT (bidir-ectional encoder representations from transformers) pretrained language model and logistic regression model (LR). In particular,BERT jointly represents the researcher and the research topic to obtain a context-depend-ent feature vector representation on sentence level. LR takes the feature vector output by BERT as input to obtain the probability that the sample is positive,and finally outputs the information of the top K collaborators with the largest probability. The comparative experiments with Network Embedding-based SDNE and TSE algorithms show that the BERT model that fully takes into account the contextual relationship between the researcher and the research topic gets a better feature vector representation,which improves the accuracy of collaborator recommendation.

相似文献/References:

[1]王卫红,吕红燕,曹玉辉,等.基于 BERT 的混合神经网络实体识别方法[J].计算机技术与发展,2021,31(08):100.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 017]
 WANG Wei-hong,LYU Hong-yan,CAO Yu-hui,et al.A Hybrid Neural Network Entity Recognition Method Based on BERT Model[J].,2021,31(03):100.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 017]
[2]王 俊,王修来*,栾伟先,等.基于 BERT 模型的科研人才领域命名实体识别[J].计算机技术与发展,2021,31(11):21.[doi:10. 3969 / j. issn. 1673-629X. 2021. 11. 004]
 WANG Jun,WANG Xiu-lai*,LUAN Wei-xian,et al.Research on Named Entity Recognition of Scientific Research Talents Field Based on BERT Model[J].,2021,31(03):21.[doi:10. 3969 / j. issn. 1673-629X. 2021. 11. 004]
[3]尚福华,蒋毅文,曹茂俊.一种增强的多粒度特征融合语义匹配模型[J].计算机技术与发展,2022,32(07):28.[doi:10. 3969 / j. issn. 1673-629X. 2022. 07. 005]
 SHANG Fu-hua,JIANG Yi-wen*,CAO Mao-jun.An Enhanced Multi Granularity Feature Fusion Model for Semantic Matching[J].,2022,32(03):28.[doi:10. 3969 / j. issn. 1673-629X. 2022. 07. 005]
[4]范禹辰,刘相坤,朱建生,等.基于 BERT 的服务网站 Web 攻击检测研究[J].计算机技术与发展,2022,32(08):168.[doi:10. 3969 / j. issn. 1673-629X. 2022. 08. 027]
 FAN Yu-chen,LIU Xiang-kun,ZHU Jian-sheng,et al.Research on Web Attack Detection of Service Website Based on BERT[J].,2022,32(03):168.[doi:10. 3969 / j. issn. 1673-629X. 2022. 08. 027]
[5]熊建华,韩永国,廖 竞,等.基于长句简化的中文开放关系抽取[J].计算机技术与发展,2023,33(02):203.[doi:10. 3969 / j. issn. 1673-629X. 2023. 02. 030]
 XIONG Jian-hua,HAN Yong-guo,LIAO Jing,et al.Chinese Open Relation Extraction Based on Long Sentence Simplification[J].,2023,33(03):203.[doi:10. 3969 / j. issn. 1673-629X. 2023. 02. 030]
[6]张 锦,胡子达,陆玟冰,等.基于 Scratch 作品相似度的检测研究[J].计算机技术与发展,2023,33(10):143.[doi:10. 3969 / j. issn. 1673-629X. 2023. 10. 022]
 ZHANG Jin,HU Zi-da,LU Wen-bing,et al.Research on Similarity Detection of Project Based on Scratch[J].,2023,33(03):143.[doi:10. 3969 / j. issn. 1673-629X. 2023. 10. 022]

更新日期/Last Update: 2020-03-10