[1]刘乾宇.基于 Faster R-CNN 的疟疾血涂片检测改进算法[J].计算机技术与发展,2021,31(01):61-66.[doi:10. 3969 / j. issn. 1673-629X. 2021. 01. 011]
 LIU Qian-yu.An Improved Algorithm for Malaria Blood Smear Detection Based on Faster R-CNN[J].,2021,31(01):61-66.[doi:10. 3969 / j. issn. 1673-629X. 2021. 01. 011]
点击复制

基于 Faster R-CNN 的疟疾血涂片检测改进算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
31
期数:
2021年01期
页码:
61-66
栏目:
图形与图像
出版日期:
2021-01-10

文章信息/Info

Title:
An Improved Algorithm for Malaria Blood Smear Detection Based on Faster R-CNN
文章编号:
1673-629X(2021)01-0061-06
作者:
刘乾宇12
1. 北京邮电大学 软件学院,北京 100876; 2. 北京邮电大学 可信分布式计算与服务教育部重点实验室,北京 100876
Author(s):
LIU Qian-yu12
1. School of Software,Beijing University of Posts and Telecommunications,Beijing 100876,China;
2. Key Laboratory of Trustworthy Distributed Computing and Service (BUPT),Ministry of Education,Beijing 100876,China
关键词:
深度学习Faster R-CNN疟疾血涂片卷积神经网络ResNet
Keywords:
deep learningFaster R-CNNmalariablood smearconvolutional neural networkResNet
分类号:
TP391
DOI:
10. 3969 / j. issn. 1673-629X. 2021. 01. 011
摘要:
根据 WHO 发布的报告,每年疟疾的新发病例超过 2 亿,死亡人数仍居高不下。 疟疾血涂片镜检法是疟疾检测的金标准,但由于人工评估所需的步骤繁琐,即使在经验丰富的医师手中,这种诊断方法也很耗时并且容易发生漏检和误检。 此外疟原虫细胞形状、密度和颜色的变化以及某些细胞类的不确定性等因素,对疟原虫检测提出了重大挑战。 基于深度学习的神经网络模型在对象检测方面取得了巨大成功,但最先进的模型尚未在生物图像数据中得到广泛应用。针对这一问题,提出一种基于深度学习的改进 Faster R-CNN 算法,用来识别疟疾血涂片细胞并检测其受感染的阶段。 在原始Faster R-CNN 的基础上,加入卷积滤波器层,采用提取特征更好的深度残差网络,通过优化锚点的属性以改善疟疾血涂片细胞分类与检测中存在的漏检、误检的问题。 实验结果表明,改进的 Faster R-CNN 模型在公开的间日疟原虫(疟疾)感染人血凃片数据集测试的平均正确率达到了 79.56%,比原始 Faster R-CNN 模型提高了 8.84% 。
Abstract:
According to the WHO,more than 200 million new malaria cases occur each year,and the number of deaths remains high. Malaria blood smear microscopy is the gold standard for malaria detection,but due to the tedious steps required for manual evaluation,it is? ?time consuming and prone to missed and false tests,even by experienced physicians. In addition,factors such as changes in the shape, density,and color of plasmodium cells and the uncertainty of certain cell types pose major challenges for the detection of plasmodium. Neural network models based on deep learning have achi-eved great success in object detection,but the most advanced models have not been widely used in biological image data. Aiming at this problem, an improved Faster R-CNN algorithm based on deep learning is proposed to identify malaria blood smear cells and detect their infected stage. Based on the original Faster R-CNN,a convolution filter layer is added,a deep residual network with better extracted features is used, and the attributes of the anchor point are optimized to improve the problems of missed detection and false detection in the classification and detection of malaria blood smear cells. The experiment shows that the improved Faster R-CNN model has an average accuracy rate of 79.56% on the public blood smear dataset of plasmodium vivax (Malaria) infection,which is 8.84% higher than the original Faster R-CNN model.

相似文献/References:

[1]陈强锐,谢世朋.基于深度学习的肺部肿瘤检测方法[J].计算机技术与发展,2018,28(04):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
 CHEN Qiang-rui,XIE Shi-peng.Lung Cancer Detection Method Based on Deep Learning[J].,2018,28(01):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
[2]施泽浩,赵启军.基于全卷积网络的目标检测算法[J].计算机技术与发展,2018,28(05):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
 SHI Ze-hao,ZHAO Qi-jun.Object Detection Algorithm Based on Fully Convolutional Neural Network[J].,2018,28(01):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
[3]黄法秀,张世杰,吴志红,等.数据增广下的人脸识别研究[J].计算机技术与发展,2020,30(03):67.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
 HUANG Fa-xiu,ZHANG Shi-jie,WU Zhi-hong,et al.Research on Face Recognition Based on Data Augmentation[J].,2020,30(01):67.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
[4]陈浩翔,蔡建明,刘铿然,等. 手写数字深度特征学习与识别[J].计算机技术与发展,2016,26(07):19.
 CHEN Hao-xiang,CAI Jian-ming,LIU Keng-ran,et al. Deep Learning and Recognition of Handwritten Numeral Features[J].,2016,26(01):19.
[5]高翔,陈志,岳文静,等.基于视频场景深度学习的人物语义识别模型[J].计算机技术与发展,2018,28(06):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
 GAO Xiang,CHEN Zhi,YUE Wen-jing,et al.Human Semantic Recognition Model Based on Video Scene Deep Learning[J].,2018,28(01):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
[6]贺飞翔,赵启军. 基于深度学习的头部姿态估计[J].计算机技术与发展,2016,26(11):1.
 HE Fei-xiang,ZHAO Qi-jun. Head Pose Estimation Based on Deep Learning[J].,2016,26(01):1.
[7]徐 融,邱晓晖.一种改进的 YOLO V3 目标检测方法[J].计算机技术与发展,2020,30(07):30.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 007]
 XU Rong,QIU Xiao-hui.An Improved YOLO V3 Object Detection[J].,2020,30(01):30.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 007]
[8]曾志平[] [],萧海东[],张新鹏[]. 基于DBN的金融时序数据建模与决策[J].计算机技术与发展,2017,27(04):1.
 ZENG Zhi-ping[] [],XIAO Hai-dong[],ZHANG Xin-peng[]. Modeling and Decision-making of Financial Time Series Data with DBN[J].,2017,27(01):1.
[9]李全兵,文 钊*,田艳梅*,等.基于 WGAN 的音频关键词识别研究[J].计算机技术与发展,2021,31(08):26.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 005]
 LI Quan-bing,WEN Zhao *,TIAN Yan-mei *,et al.Research on Audio Keywords Recognition Based on WassersteinGenerative Adversarial Network[J].,2021,31(01):26.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 005]
[10]李宏林. 分析式纹理合成技术及其在深度学习的应用[J].计算机技术与发展,2017,27(11):7.
 LI Hong-lin. Analyzed Texture-synthesis Techniques and Their Applications in Deep Learning[J].,2017,27(01):7.
[11]王立春,刘宁钟,李强懿.基于无人机航拍图像的公路标线检测算法[J].计算机技术与发展,2018,28(09):138.[doi:10.3969/ j. issn.1673-629X.2018.09.028]
 WANG Li-chun,LIU Ning-zhong,LI Qiang-yi.A Road Markings Detection Algorithm Based on Aerial Image of UAV[J].,2018,28(01):138.[doi:10.3969/ j. issn.1673-629X.2018.09.028]
[12]阮航,孙涵.基于 Faster R-CNN 的车辆多属性识别[J].计算机技术与发展,2018,28(10):129.[doi:10.3969/ j. issn.1673-629X.2018.10.027]
 RUAN Hang,SUN Han.Vehicle Multi-attribute Recognition Based on Faster R-CNN[J].,2018,28(01):129.[doi:10.3969/ j. issn.1673-629X.2018.10.027]

更新日期/Last Update: 2020-01-10