[1]侯庆山,邢进生.基于 FNN 模型的决策算法研究[J].计算机技术与发展,2020,30(12):92-98.[doi:10. 3969 / j. issn. 1673-629X. 2020. 12. 017]
 HOU Qing-shan,XING Jin-sheng.Research on Decision Algorithm Based on Fuzzy Neural Network[J].,2020,30(12):92-98.[doi:10. 3969 / j. issn. 1673-629X. 2020. 12. 017]
点击复制

基于 FNN 模型的决策算法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30
期数:
2020年12期
页码:
92-98
栏目:
智能、算法、系统工程
出版日期:
2020-12-10

文章信息/Info

Title:
Research on Decision Algorithm Based on Fuzzy Neural Network
文章编号:
1673-629X(2020)12-0092-07
作者:
侯庆山邢进生
山西师范大学 数学与计算机科学学院,山西 临汾 041000
Author(s):
HOU Qing-shanXING Jin-sheng
School of Mathematics and Computer Science,Shanxi Normal University,Linfen 041000,China
关键词:
复杂性稳定性证据理论样本分类神经网络模糊集理论隶属度
Keywords:
complexitystabilityevidence theorysample classificationneural networksfuzzy set theorymembership
分类号:
TP301. 6
DOI:
10. 3969 / j. issn. 1673-629X. 2020. 12. 017
摘要:
鉴于证据理论对样本分类和决策过程的复杂性以及不稳定性,提出了一种基于神经网络模型和模糊集理论的样本决策算法。 为了降低样本分类和决策过程的复杂性,增强算法的稳定性和适用性,在该算法中,设计并提出了一种新的隶属度函数。 应用提出的隶属函数对相关数据集样本进行模糊化处理,得到数据集的模糊化矩阵,其中输入样本数据与不同样本类别的隶属度相关联。 根据隶属度矩阵,并结合性能较好的激活函数 Swish-B,通过神经网络分类器,样本将被归属于特定的类。 基于鸢尾花数据集对其进行可视化分析, 将该方法与传统的证据理论及相关改进算法进行比较,验证了所设计的隶属度函数具有良好性能,同时实验结果证明了该算法的合理性与有效性,算法过程更为简单,鸢尾花数据集的分类准确率高达 98% 。
Abstract:
In view of the complexity and instability of evidence theory in sample classification and decision-making,a sample decision algorithm based on neural network model and fuzzy set theory is proposed. In order to reduce the complexity of sample classification and decision-making process and enhance the stability and applicability of the algorithm, a new membership function is designed and prop-osed to blur the relevant data set samples to obtain the fuzzy matrix of the data set. The input sample data is associated with the membership of different sample categories. According to the memb-ership matrix,the samples will be assigned to a specific class by the neural network classifier. Based on iris data set and visual analysis,this method is compared with traditional evidence theory and related improved algorithms. It is proved that the new membership function has excellent performance. Experiment shows that the proposed algorithm is reasonable and effective with simpler process. The classification accuracy of the iris data set is as high as 98% .

相似文献/References:

[1]靳建平 杨红雨.基于UDP的可靠数据传输协议仿真研究[J].计算机技术与发展,2010,(05):1.
 JIN Jian-ping,YANG Hong-yu.Simulation and Research on UDP-Based Data Transfer Protocol[J].,2010,(12):1.
[2]高彬彬 杨孔雨.免疫算法研究[J].计算机技术与发展,2009,(07):249.
 GAO Bin-bin,YANG Kong-yu.Research on Immune Algorithms[J].,2009,(12):249.
[3]常郝.动态手写签名差异性影响评估[J].计算机技术与发展,2009,(04):174.
 CHANG Hao.Evaluation of Variation in Dynamic Handwritten Signature[J].,2009,(12):174.
[4]李彪 左黎明 谢环.素数确定性算法分析[J].计算机技术与发展,2011,(08):26.
 LI Biao,ZUO Li-ming,XIE Huan.Prime Number Determinacy Algorithm Analysis[J].,2011,(12):26.
[5]刘俊锋 吴中元.民族关系监测与预警系统的设计与实现[J].计算机技术与发展,2012,(09):185.
 LIU Jun-feng,WU Zhong-yuan.Design and Implementation of National Relationship Monitoring and Warning System[J].,2012,(12):185.
[6]陈志明 崔宝同.数据包丢失的无线网络控制系统的故障检测[J].计算机技术与发展,2012,(11):61.
 CHEN Zhi-ming,CUI Bao-tong.Faults Detection Occurred in Wireless Networked Control System with Packet Dropout[J].,2012,(12):61.
[7]田飞[],陈翰雄[],黄雅云[],等. 重置概率可变的自适应网络病毒传播研究[J].计算机技术与发展,2015,25(10):140.
 TIAN Fei[],CHEN Han-xiong[],HUANG Ya-yun[],et al. Research on Epidemic Spreading on Adaptive Network with Varied Resetting Probability[J].,2015,25(12):140.
[8]贺国旗[],韩泉叶[],陈绥阳[]. 外部输入与两单元CNN的完全稳定性[J].计算机技术与发展,2016,26(09):167.
 HE Guo-qi[],HAN Quan-ye[],CHEN Sui-yang[]. Complete Stability of Two-cell Cellular Neural Networks with External Inputs[J].,2016,26(12):167.
[9]丁汉,唐云祁,郭威. 自然行走状态下的足底压力稳定性研究[J].计算机技术与发展,2017,27(04):153.
 DING Han,TANG Yun-qi,GUO Wei. Research on Stability of Plantar Pressure in Normal HumanWalking Condition[J].,2017,27(12):153.
[10]张 磊,曹建军,刘 艺,等.基于多目标蚁群算法的稳定参考点选择[J].计算机技术与发展,2019,29(08):1.[doi:10. 3969 / j. issn. 1673-629X. 2019. 08. 001]
 ZHANG Lei,CAO Jian-jun,LIU Yi,et al.Stable Reference Data Selection Based on Multi-objective Ant Colony Algorithm[J].,2019,29(12):1.[doi:10. 3969 / j. issn. 1673-629X. 2019. 08. 001]

更新日期/Last Update: 2020-12-10