[1]陈文勤,郝慧杰,肖 建,等.一种高精度的光伏阵列红外图像分割算法[J].计算机技术与发展,2020,30(11):153-157.[doi:10. 3969 / j. issn. 1673-629X. 2020. 11. 028]
 CHEN Wen-qin,HAO Hui-jie,XIAO Jian,et al.A High-precision Photovoltaic Array Infrared Image Segmentation Algorithm[J].,2020,30(11):153-157.[doi:10. 3969 / j. issn. 1673-629X. 2020. 11. 028]
点击复制

一种高精度的光伏阵列红外图像分割算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30
期数:
2020年11期
页码:
153-157
栏目:
应用开发研究
出版日期:
2020-11-10

文章信息/Info

Title:
A High-precision Photovoltaic Array Infrared Image Segmentation Algorithm
文章编号:
1673-629X(2020)11--0153-05
作者:
陈文勤郝慧杰肖 建郭宇锋
南京邮电大学 电子与光学工程学院、微电子学院,江苏 南京 210023
Author(s):
CHEN Wen-qinHAO Hui-jieXIAO JianGUO Yu-feng
School of Electronic and Optical Engineering,School of Microelectronic,Nanjing University of Posts and Telecommunications,Nanjing 210023,China
关键词:
红外图像光伏阵列图像分割局部标准差高精度
Keywords:
infrared imagephotovoltaic arrayimage segmentationlocal standard deviationhigh precision
分类号:
TP391. 4
DOI:
10. 3969 / j. issn. 1673-629X. 2020. 11. 028
摘要:
随着化石能源短缺,且其燃烧带来的环境污染问题,清洁的太阳能发电得到更广泛的使用。然而光伏阵列长期处于恶劣环境中,导致光伏组件容易出现损坏。传统光伏故障检测方法效率较低、准确率不高,难以满足实际需求。 因此在分析光伏阵列图像特征的基础上,提出基于光伏阵列区域局部灰度特征的高精度分割算法。 通过使用? 5×5 的滑动窗口计算 Gaussian 处理后的灰度图像的局部标准差,以此衡量局部灰度一致性,提取出灰度一致性高的区域。应用形态学膨胀处理所得区域,并使用基于尺寸的筛选方法去除孤立小区域,得到最终分割结果。 实验结果表明,该算法对于光伏阵列的识别准确率达到了 96% 以上,同时降低了背景区域的误检率。 算法可精确、有效地分割出光伏阵列区域,分割效果优于边缘检测和 Otsu 算法。
Abstract:
With the shortage of fossil energy and the environmental pollution caused by its combustion,clean solar power has been widely used. However, the photovoltaic array has been in a harsh environment for a long time,causing the photovoltaic modules to be easily damaged. Traditional photovoltaic fault detection methods have low efficiency and low accuracy,which is difficult to meet actual needs.Therefore,based on the ana-lysis of the photovoltaic array image characteristics,we propose a high-precision segmentation algorithm based on local gray features of the photovoltaic array region. By using a 5×5 sliding window to calculate the local standard deviation of the gray image after Gaussian to measure local gray consistency,the regions with high gray consistency are extracted. Apply the morphological expansion process to the region obtained, and propose a size-based filtering method to remove the isolated small regions to obtain the final segmentation result. The proposed algorithm achieves a recognition accuracy of more than 96% for the photovoltaic array,while reducing the false detection rate of the background region. The algorithm can accurately and effectively segment the photovoltaic array region,and the segmentation effect is better than traditional algorithm,such as the edge detection and Otsu algorithm.

相似文献/References:

[1]王福田 汤进 罗斌.带电设备红外辅助诊断系统的开发[J].计算机技术与发展,2009,(04):184.
 WANG Fu-tian,TANG Jin,LUO Bin.Development of Infrared Auxiliary Diagnosis System of Charged Equipments[J].,2009,(11):184.
[2]刘辉 赵文杰 吴畏.改进的多尺度Retinex红外图像增强算法[J].计算机技术与发展,2011,(04):105.
 LIU Hui,ZHAO Wen-jie,WU Wei.An Improved Multi-scale Retinex Infrared Image Enhancement Algorithm[J].,2011,(11):105.

更新日期/Last Update: 2020-11-10