[1]曹晓月,张旭秀.学习因子随权重调整的混合粒子群算法[J].计算机技术与发展,2020,30(11):30-36.[doi:10. 3969 / j. issn. 1673-629X. 2020. 11. 006]
 CAO Xiao-yue,ZHANG Xu-xiu.Research of Simplified Particle Swarm Optimization Algorithm with Weight and Learning Factor[J].,2020,30(11):30-36.[doi:10. 3969 / j. issn. 1673-629X. 2020. 11. 006]
点击复制

学习因子随权重调整的混合粒子群算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30
期数:
2020年11期
页码:
30-36
栏目:
智能、算法、系统工程
出版日期:
2020-11-10

文章信息/Info

Title:
Research of Simplified Particle Swarm Optimization Algorithm with Weight and Learning Factor
文章编号:
1673-629X(2020)11-0030-07
作者:
曹晓月张旭秀
大连交通大学 电气信息工程学院,辽宁 大连 116021
Author(s):
CAO Xiao-yueZHANG Xu-xiu
School of Electrical Information Engineering,Dalian Jiaotong University,Dalian 116021,China
关键词:
粒子群算法学习因子惯性权重混合算法收敛性分析
Keywords:
particle swarm optimizationlearning factorinertia weighthybrid algorithmconvergence analysis
分类号:
TP301
DOI:
10. 3969 / j. issn. 1673-629X. 2020. 11. 006
摘要:
首先使惯性权重随迭代次数和粒子状态非线性改变平衡算法的全局探测和局部开采的能力,为了解决惯性权重与学习因子独立调整削弱了粒子群算法的统一性和智能性等问题,通过分析惯性权重与学习因子的变化关系,将学习因子表示为惯性权重的 logistic 回归分析型函数。 由于非线性因子的加入会降低粒子的多样性,结合差分进化算法的交叉算子和变异策略,利用交叉算子来提高算法的全局探索能力,保持种群多样性;利用差分进化算法的变异策略产生候选解来更新位置公式,给出了学习因子随权重调整的混合粒子群算法,并对新提出算法的收敛性进行理论分析。 将此改进算法与相关算法在四个测试函数上进行对比实验,证明该算法在寻优精度、迭代速度和收敛成功率上有明显改进。
Abstract:
Firstly,the inertia weight changes the global detection and local mining capability of the equilibrium algorithm nonlinearly with iteration times and particle state. In order to solve the problem that the independent adjustment of inertia weight and learning factor weakens the unity and intelligence of particle swarm optimization(PSO) algorithm,the learning factor is expressed as a logistic regression analysis function of inertia weight by analyzing the relationship between inertia weight and learning factor. Since the addition of nonlinear factors will reduce the divers-ity of particles, combining the crossover operator and mutation strategy of the differential evolution algorithm,the crossover operator is used to improve the global exploration ability of the algorithm,which keeps the diversity of the population. By the variation strategy of the differential evolutionary algorithm,the candidate solutions can be generated to update the position formula. A hybrid particle swarm optimization algorithm with learning factors adjusted with weights is proposed and its convergence is analyzed theoretically. Finally, the improved algorithm is compared with the existing algorithm on four test functions,and it is proved that it has obvious improvement on the optimization accuracy, iteration speed and convergence success rate.

相似文献/References:

[1]张爱华 江中勤 张华.基于粒子群优化算法的分形图像压缩编码[J].计算机技术与发展,2010,(02):21.
 ZHANG Ai-hua,JIANG Zhong-qin,ZHANG Hua.Fractal Image Compression Coding Based on PSO[J].,2010,(11):21.
[2]唐俊.PSO算法原理及应用[J].计算机技术与发展,2010,(02):213.
 TANG Jun.Principle and Application of PSO Algorithm[J].,2010,(11):213.
[3]张捍东 廖天红 岑豫皖.用模拟退火思想的粒子群算法实现图像分割[J].计算机技术与发展,2010,(05):83.
 ZHANG Han-dong,LIAO Tian-hong,CEN Yu-wan.Image Segmentation Through Particle Swarm Optimization Based on Simulated Annealing[J].,2010,(11):83.
[4]廖锋 高兴宝.差分演化算法在约束优化问题中的应用[J].计算机技术与发展,2010,(05):187.
 LIAO Feng,GAO Xing-bao.Application of Differential Evolution Algorithms on Constraint Optimization Problems[J].,2010,(11):187.
[5]来磊 卢文科 邓开连.基于二维Tsallis交叉熵直线型图像阈值分割方法[J].计算机技术与发展,2010,(06):105.
 LAI Lei,LU Wen-ke,DENG Kai-lian.New Image Thresholding Segmentation Methods Based on Two-Dimensional Tsallis Cross-Entropy Liner-Type[J].,2010,(11):105.
[6]邹毅 朱晓萍 王秀平.一种基于混沌优化的混合粒子群算法[J].计算机技术与发展,2009,(11):18.
 ZOU Yi,ZHU Xiao-ping,WANG Xiu-ping.A Hybrid PSO Algorithm Based on Chaos Optimization[J].,2009,(11):18.
[7]王为为 程家兴 贺晟.基于佳点集交叉的粒子群算法[J].计算机技术与发展,2009,(12):32.
 WANG Wei-wei,CHENG Jia-xing,HE Sheng.Particle Swarm Algorithm Based on Good Point Set Crossover[J].,2009,(11):32.
[8]贾瑞玉 黄义堂 邢猛.一种动态改变权值的简化粒子群算法[J].计算机技术与发展,2009,(02):137.
 JIA Rui-yu,HUANG Yi-tang,XING Meng.A Modified Simple Particle Swarm Optimization Using Dynamically Decreasing Inertia Weight[J].,2009,(11):137.
[9]卢珊萍 于盛林.基于粒子群算法的细胞神经网络模板参数设计[J].计算机技术与发展,2009,(04):83.
 LU Shan-ping,YU Sheng-lin.A Template Design Method for Cellular Neural Network Based on Particle Swarm Optimizer Algorithm[J].,2009,(11):83.
[10]王艳玲 李龙澍 胡哲.群体智能优化算法[J].计算机技术与发展,2008,(08):114.
 WANG Yan-ling,LI Long-shu,HU Zhe.Swarm Intelligence Optimization Algorithm[J].,2008,(11):114.

更新日期/Last Update: 2020-11-10