[1]张敬尊,张睿哲,徐光美,等.稀疏表示模型及高光谱遥感应用研究[J].计算机技术与发展,2020,30(10):173-178.[doi:10. 3969 / j. issn. 1673-629X. 2020. 10. 031]
 ZHANG Jing-zun,ZHANG Rui-zhe,XU Guang-mei,et al.Research of Sparse Models and Applications in Hyperspectral Images[J].,2020,30(10):173-178.[doi:10. 3969 / j. issn. 1673-629X. 2020. 10. 031]
点击复制

稀疏表示模型及高光谱遥感应用研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30
期数:
2020年10期
页码:
173-178
栏目:
应用开发研究
出版日期:
2020-10-10

文章信息/Info

Title:
Research of Sparse Models and Applications in Hyperspectral Images
文章编号:
1673-629X(2020)10-0173-06
作者:
张敬尊张睿哲徐光美王金华何 宁
北京联合大学 智慧城市学院,北京 100101
Author(s):
ZHANG Jing-zunZHANG Rui-zheXU Guang-meiWANG Jin-huaHE Ning
School of Smart City,Beijing Union University,Beijing 100101,China
关键词:
稀疏表示稀疏编码字典学习高光谱降维分类
Keywords:
sparse representationsparse codingdictionary learninghyperspectraldimension reductionclassification
分类号:
TP39
DOI:
10. 3969 / j. issn. 1673-629X. 2020. 10. 031
摘要:
稀疏表示是一种新型的数据挖掘技术,与传统算法相比,稀疏表示类算法更善于发现隐藏在数据背后的知识,具有优秀的特征发现和保持能力,近年来成为多领域的研究热点。 然而,各领域对此技术的表征和描述不尽相同, 不利于遥感高光谱图像处理领域的扩展,应用潜力有待深挖。 该文在对生物视觉、统计学以及机器学习等领域中稀疏表示的理论基础、研究进展进行总结的基础上,提出了遥感适用的稀疏表示框架,就稀疏表示的模型进行了系统而详尽的描述,重点介绍了稀疏编码及字典学习两个关键问题。 基于稀疏表示遥感应用适用性及应用潜力分析的需求,梳理了稀疏表示模型遥感领域的应用,重点分析并统计了高光谱各分支的应用热点与难点。 最后,对稀疏表示框架的优势以及高光谱遥感图像处理应用面临的问题进行了总结。
Abstract:
As a new technology of data mining,sparse representation is better at discovering the knowledge hidden behind the data and has excellent feature discovery and retention ability compared with traditional algorithms. In recent years,it has become a research hotspot in many fields. However, the characterization and description of this technique vary from field to field,which is not conducive to the expansion of remote sensing hyperspectral image processing field,and the application potential remains to be deeply explored. On the basis of summarizing the theoretical basis,research progress and application of sparse representation from three fields of biological vision, statistics and machine learning,we comb out the remote sensing oriented framework,systematically and detailedly describe the model and terminology system of sparse representation, and focus on two key issues of sparse coding and dictionary learning. Based on the requirements of application applicability and application potential analysis of sparse representation remote sensing, we review the application of sparse representation model in the field of remote sensing,and focus on the analysis and statistics of application hotspots and difficulties of each branch of hyperspectral. Finally,the advantages of sparse representation framework and the problems in remote sensing image processing are summarized.

相似文献/References:

[1]朱伟冬 胡剑凌.基于马氏距离的稀疏表示分类算法[J].计算机技术与发展,2011,(11):27.
 ZHU Wei-dong,HU Jian-ling.Sparse Representation Classification Algorithm Based on Mahalanobis Distance[J].,2011,(10):27.
[2]王韦刚 庄伟胤.基于NIOS Ⅱ的图像压缩感知[J].计算机技术与发展,2012,(04):12.
 WANG Wei-gang,ZHUANG Wei-yin.Compressed Sensing of Image Based on NIOS Ⅱ[J].,2012,(10):12.
[3]赵海峰,于雪敏,邹际祥,等.基于L1范数主成分分析的颅脑图像恢复[J].计算机技术与发展,2014,24(01):231.
 ZHAO Hai-feng[],YU Xue-min[],ZOU Ji-xiang[],et al.Cerebral Image Recovery Based on L1-norm Principal Component Analysis[J].,2014,24(10):231.
[4]陈静,邱晓晖,孙娜. 基于二维Gabor小波与SPP算法的人脸识别研究[J].计算机技术与发展,2014,24(11):110.
 CHEN Jing,QIU Xiao-hui,SUN Na. Research on Face Recognition Based on 2 D Gabor Wavelet and SPP Algorithm[J].,2014,24(10):110.
[5]姚刚,杨敏. 稀疏子空间聚类的惩罚参数自调整交替方向法[J].计算机技术与发展,2014,24(11):131.
 YAO Gang,YANG Min. Alternating Direction Method of Self-adjusting Penalty Parameters of Sparse Subspace Clustering[J].,2014,24(10):131.
[6]徐静妹,李 雷.基于稀疏表示和支持向量机的人脸识别算法[J].计算机技术与发展,2018,28(02):59.[doi:10.3969/j.issn.1673-629X.2018.02.014]
 XU Jingmei,LI Lei.A Face Recognition Algorithm Based on Sparse Representation and Support Vector Machine[J].,2018,28(10):59.[doi:10.3969/j.issn.1673-629X.2018.02.014]
[7]钱阳,李雷. 一种基于新型KPCA算法的视频压缩感知算法[J].计算机技术与发展,2015,25(10):101.
 QIAN Yang,LI Lei. A Video Compressed Sensing Algorithm Based on Novel KPCA[J].,2015,25(10):101.
[8]余琨,荆晓远,吴飞,等. 基于竞争聚集的K-SVD字典学习算法[J].计算机技术与发展,2015,25(11):44.
 YU Kun,JING Xiao-yuan,WU Fei,et al. K-SVD Dictionary Learning Algorithm Based on Competitive Agglomeration[J].,2015,25(10):44.
[9]陈骁,金鑫. 基于级联Adaboost与示例投票的人脸检测[J].计算机技术与发展,2015,25(12):18.
 CHEN Xiao,JIN Xin. Face Detection Based on Cascade Adaboost and Exemplar Voting[J].,2015,25(10):18.
[10]于云,周伟栋. 基于稀疏表示的鲁棒性说话人识别系统[J].计算机技术与发展,2015,25(12):41.
 YU Yun,ZHOU Wei-dong. Robust Speaker Recognition System Based on Sparse Representation[J].,2015,25(10):41.
[11]葛广重,杨敏.基于稀疏表示的单幅图像超分辨率重建[J].计算机技术与发展,2013,(09):113.
 GE Guang-zhong,YANG Min.Single Image Super-resolution Reconstruction Based on Sparse Representation[J].,2013,(10):113.

更新日期/Last Update: 2020-10-10