相似文献/References:
[1]蒋宗礼,王威,陆晨. 基于均值预估的协同过滤推荐算法改进[J].计算机技术与发展,2017,27(05):1.
JIANG Zong-li,WANG Wei,LU Chen. 基于均值预估的协同过滤推荐算法改进[J].,2017,27(09):1.
[2]刘金梅,舒远仲,张尚田,等.融合巴氏系数的加权 Slope One 算法[J].计算机技术与发展,2020,30(11):74.[doi:10. 3969 / j. issn. 1673-629X. 2020. 11. 014]
LIU Jin-mei,SHU Yuan-zhong,ZHANG Shang-tian,et al.A Weighted Slope One Algorithm Based on Bhattacharyya Coefficient[J].,2020,30(09):74.[doi:10. 3969 / j. issn. 1673-629X. 2020. 11. 014]
[3]刘金梅,舒远仲,张尚田.基于评分填充和时间的加权 Slope One 算法[J].计算机技术与发展,2021,31(01):35.[doi:10. 3969 / j. issn. 1673-629X. 2021. 01. 007]
LIU Jin-mei,SHU Yuan-zhong,ZHANG Shang-tian.A Weighted Slope One Algorithm Based on Rating Filling and Time[J].,2021,31(09):35.[doi:10. 3969 / j. issn. 1673-629X. 2021. 01. 007]
[4]潘理虎,郝彦杰,周耀辉,等.基于文本卷积的多因素煤炭产品推荐模型[J].计算机技术与发展,2021,31(04):198.[doi:10. 3969 / j. issn. 1673-629X. 2021. 04. 034]
PAN Li-hu,HAO Yan-jie,ZHOU Yao-hui,et al.Multi Factor Coal Product Recommendation Model Based onText Convolution[J].,2021,31(09):198.[doi:10. 3969 / j. issn. 1673-629X. 2021. 04. 034]
[5]刘雯雯,汪皖燕,程树林.融合项目热门惩罚因子改进协同过滤推荐方法[J].计算机技术与发展,2023,33(03):15.[doi:10. 3969 / j. issn. 1673-629X. 2023. 03. 003]
LIU Wen-wen,WANG Wan-yan,CHENG Shu-lin.Improved Collaborative Filtering Recommendation Method Integrating Item Popularity Punishment Factor[J].,2023,33(09):15.[doi:10. 3969 / j. issn. 1673-629X. 2023. 03. 003]