[1]王振业,叶成绪*,王文韬,等.基于 LSTM-Att 方法的音乐流行趋势预测[J].计算机技术与发展,2020,30(09):188-193.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 034]
 WANG Zhen-ye,YE Cheng-xu*,WANG Wen-tao,et al.Music Trend Forecast Based on LSTM-Att Method[J].,2020,30(09):188-193.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 034]
点击复制

基于 LSTM-Att 方法的音乐流行趋势预测()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30
期数:
2020年09期
页码:
188-193
栏目:
应用开发研究
出版日期:
2020-09-10

文章信息/Info

Title:
Music Trend Forecast Based on LSTM-Att Method
文章编号:
1673-629X(2020)09-0188-06
作者:
王振业1叶成绪1*王文韬1杨 萍2
1. 青海师范大学 计算机学院,青海 西宁 810008; 2. 青海师范大学 地理科学学院,青海 西宁 810008
Author(s):
WANG Zhen-ye1YE Cheng-xu1*WANG Wen-tao1YANG Ping2
1. School of Computer,Qinghai Normal University,Xining 810008,China; 2. School of Geography,Qinghai Normal University,Xining 810008,China
关键词:
音乐流行趋势时间序列长短时记忆网络注意力机制支持向量机
Keywords:
music trendtime serieslong short-term memory networkattention mechanismsupport vector machine
分类号:
TP181
DOI:
10. 3969 / j. issn. 1673-629X. 2020. 09. 034
摘要:
利用循环神经网络的分支长短时记忆网络与注意力机制结合的模型进行音乐流行趋势的预测。 首先,分析了传统的支持向量机以及循环神经网络等方法在预测时间序列数据上不能捕捉长时间序列信息等不足之处;其次,基于以上分析建立了长短时记忆网络加注意力机制结合的预测模型,针对所要预测的未来两个月歌手歌曲播放量,对数据集进行分析及相关属性选取、归一化等预处理,选取组合相应的歌曲日播放量、连续 3 天播放均值作为相应时间点的样本构建神经网络训练集;最后,设计实现了基于长短时记忆网络加注意力机制相结合的预测模型实验。 实验结果表明,所使用的预测模型较传统的机器学习方法支持向量机以及长短时记忆网络等在均方根误差和平均绝对误差两个指标上取得了较为明显的提升。
Abstract:
Prediction of music popularity trend is carried out by using a model that combines the long short-time memory network of the cyclic neural network and the attention mechanism. Firstly,the shortcomings of traditional support vector machines and cyclic neural networks in predicting time series data like not capturing long time series information are analyzed. Secondly, based on the above analysis,the prediction model of the combination of long short-time memory network and attention mechanism is established. According to the predicted amount of songs played by artists in the next two months,the data set is analyzed and pre-processed such as relevant attribute selection and normalization,and the daily amount of songs played in combination and the average amount of songs played in 3 consecutive days are selected as samples at corresponding time points to construct the neural network training set. Finally,the prediction model experiment based on the combination of long short-time memory network and attention mechanism is designed,which shows that the proposed prediction model has achieved significant improvement over the traditional machine learning method support vector machine and long short-term memory network in terms of root mean square error and average absolute error.

相似文献/References:

[1]赵伟 梁循.互联网金融信息量与收益率波动关联研究[J].计算机技术与发展,2009,(12):1.
 ZHAO Wei,LIANG Xun.Research on Relationship Between Internet Financial Information and Fluctuation of Price - Earnings[J].,2009,(09):1.
[2]张虹 赵兵 钟华.基于小波多尺度的网络论坛话题热度趋势预测[J].计算机技术与发展,2009,(04):76.
 ZHANG Hong,ZHAO Bing,ZHONG Hua.Hot Trend Prediction of Network Forum Topic Based on Wavelet Multi - Resolution Analysis[J].,2009,(09):76.
[3]常毅 王加阳.时态信息系统转换方法研究[J].计算机技术与发展,2008,(07):15.
 CHANG Yi,WANG Jia-yang.Research on Method of Translating TIS to IS[J].,2008,(09):15.
[4]施尧 赵勇 杨雪洁 赵妹 张燕平 关有训 王克强.基于覆盖算法的大气质量预测[J].计算机技术与发展,2008,(07):190.
 SHI Yao,ZHAO Yong,YANG Xue-jie,et al.Application of Covering Algorithm to Prediction of Air Quality[J].,2008,(09):190.
[5]何星星 孙德山.模糊神经网络与SARIMA结合的时间序列预测模型[J].计算机技术与发展,2008,(08):61.
 HE Xing-xing,SUN De-shan.A Time Series Forecasting Model Using a Hybrid Fuzzy Neural Network and SARIMA[J].,2008,(09):61.
[6]兰妥 江弋 刘光生.基于Sas的时间序列缺失值处理方法比较[J].计算机技术与发展,2008,(10):43.
 LAN Tuo,JIANG Yi,LIU Guang-sheng.Comparison of Methods on Time Series' Missing Value Based on Sas[J].,2008,(09):43.
[7]查春生 倪志伟 倪丽萍 公维峰.基于相空间重构的股价时间序列相关性分析[J].计算机技术与发展,2010,(08):17.
 ZHA Chun-sheng,NI Zhi-wei,NI Li-ping,et al.Correlations Analysis Between Stock Index Time Serials Based on Reconstructed Phase Space[J].,2010,(09):17.
[8]贾瑞玉 王亮 王会颖.二维CVVT方法在时间序列分析中的应用研究[J].计算机技术与发展,2007,(05):160.
 JIA Rui-yu,WANG Liang,WANG Hui-ying.Research for Applications of 2D - CWT Approach in Time Series Analysis[J].,2007,(09):160.
[9]张诚 郑诚.基于时间的模糊关联规则挖掘[J].计算机技术与发展,2007,(07):60.
 ZHANG Cheng,ZHENG Cheng.Fuzzy Association Rules Mining over Time[J].,2007,(09):60.
[10]胡蓉.多输出支持向量回归及其在股指预测中的应用[J].计算机技术与发展,2007,(10):226.
 HE Rong.Application of Multi - Output Support Vector Regression in Stock Market Index Forecasting[J].,2007,(09):226.

更新日期/Last Update: 2020-09-10