[1]滕爱国,单新文,王鹏飞,等.基于 Hadoop 平台电力数据服务匹配查询性能研究[J].计算机技术与发展,2020,30(09):182-187.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 033]
 TENG Ai-guo,DAN Xin-wen,WANG Peng-fei,et al.Research on Matching Query Performance of Power Data Service Based on Hadoop Platform[J].,2020,30(09):182-187.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 033]
点击复制

基于 Hadoop 平台电力数据服务匹配查询性能研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30
期数:
2020年09期
页码:
182-187
栏目:
应用开发研究
出版日期:
2020-09-10

文章信息/Info

Title:
Research on Matching Query Performance of Power Data Service Based on Hadoop Platform
文章编号:
1673-629X(2020)09-0182-06
作者:
滕爱国单新文王鹏飞陶晔波闾 龙顾玉皎
国网江苏省电力有限公司,江苏 南京 210016
Author(s):
TENG Ai-guoDAN Xin-wenWANG Peng-feiTAO Ye-boLYU LongGU Yu-jiao
State Grid Jiangsu Electric Power Co. ,Ltd. ,Nanjing 210016,China
关键词:
电网大数据Hadoop查询服务匹配RDF
Keywords:
grid big dataHadoopqueryservice matchingRDF
分类号:
TP39
DOI:
10. 3969 / j. issn. 1673-629X. 2020. 09. 033
摘要:
电网大数据的数据结构复杂、种类繁多,除传统的结构化数据外,还包含大量的半结构化、非结构化数据,如服务系统的语音数据,检测数据中的波形数据、直升机巡检中拍摄的图像数据和地理信息数据等。 针对电力大数据的复杂性和地理图数据在服务匹配查询中困难的问题,提出一种基于描述逻辑的匹配模型,该模型的描述逻辑包括 TBox 和 ABox,其方法是将个体和整体分开进行量化。 在匹配用户输入本体数据库时,该模型采取正式化信息域作为类和实例,同时基于 RDF 框架的描述逻辑将结构化数据转换为 DL。 该模型通过 Hadoop 组件生成 SPARQL 查询语言,然后查询语言与Mongodb 匹配输出查询处理结果。 最后基于实际数据进行大量对比实验,结果证明了该模型提供了最小的搜索时间和最佳的匹配准确度。
Abstract:
The data structure of power grid big data is complex and diverse. In addition to the traditional structured data,it also contains a large amount of semi-structured and unstructured data,such? ?as voice data of service system,waveform data in detection data,image data and geographic information data that helicopter captured. Aiming at the complexity of power big data and the difficulty of geographic map data in service matching query,we propose a matching model based on description logic,including TBox and ABox,which is to quantify the individual and the whole separately. When matching the user input ontology database, the model takes the formalized information domain as a class and instance, and converts the structured data into DL based on the description logic of the RDF framework. It generates a SPARQL query language through Hadoop components, and then the query language matches Mongodb to output query processing results. Finally, a large number of experiments are carried out based on actual data. It is showed that the proposed system model provides the minimum search time and the best matching accuracy.

相似文献/References:

[1]李远方 邓世昆 闻玉彪 韩月阳.Hadoop-MapReduce下的PageRank矩阵分块算法[J].计算机技术与发展,2011,(08):6.
 LI Yuan-fang,DENG Shi-kun,WEN Yu-biao,et al.PageRank Matrix Partitioned Algorithm Using Hadoop-MapReduce[J].,2011,(09):6.
[2]李远方 贾时银 邓世昆 韩月阳.基于树结构的MapReduce模型[J].计算机技术与发展,2011,(08):149.
 LI Yuan-fang,JIA Shi-yin,DENG Shi-kun,et al.MapReduce Model Based on Tree Structure[J].,2011,(09):149.
[3]王梅,朱信忠,赵建民,等.基于 Hadoop 的海量图像检索系统[J].计算机技术与发展,2013,(01):204.
 WANG Mei,ZHU Xin-zhong,ZHAO Jian-min,et al.Massive Images Retrieval System Based on Hadoop[J].,2013,(09):204.
[4]王晓军,孙惠.基于MapReduce的多路连接优化方法研究[J].计算机技术与发展,2013,(06):59.
 WANG Xiao-jun,SUN Hui.Research of Optimizing Multiway Joins Based on MapReduce[J].,2013,(09):59.
[5]朱贤军,李敬兆.无加密模式下对云数据的隐私保密[J].计算机技术与发展,2013,(06):216.
 ZHU Xian-jun,LI Jing-zhao.Cloud Data Privacy under None Encryption[J].,2013,(09):216.
[6]周婷,张君瑛,罗成.基于Hadoop的K-means聚类算法的实现[J].计算机技术与发展,2013,(07):18.
 ZHOU Ting[],ZHANG Jun-ying[],LUO Cheng[].Realization of K-means Clustering Algorithm Based on Hadoop[J].,2013,(09):18.
[7]吕婉琪,钟诚,唐印浒,等.Hadoop分布式架构下大数据集的并行挖掘[J].计算机技术与发展,2014,24(01):22.
 L Wan-qi,ZHONG Cheng,TANG Yin-hu,et al.Parallel Mining of Large Dataset in Hadoop Distributed Computing Framework[J].,2014,24(09):22.
[8]王晓军,邹亮亮. Hadoop迭代优化技术的研究[J].计算机技术与发展,2014,24(09):98.
 WANG Xiao-jun,ZOU Liang-liang. Research on Optimizing Iterative Technology of Hadoop[J].,2014,24(09):98.
[9]徐源吾[][],王珣[][]. 基于Hadoop的智能家居信息处理平台[J].计算机技术与发展,2014,24(09):183.
 XU Yuan-wu[] [],WANG Xun[][]. nformation Processing Platform of Smart Home Based on Hadoop[J].,2014,24(09):183.
[10]孙媛,黄刚. 基于Hadoop平台的C4.5算法的分析与研究[J].计算机技术与发展,2014,24(11):83.
 SUN Yuan,HUANG Gang. Analysis and Study of C4 . 5 Algorithm Based on Hadoop Platform[J].,2014,24(09):83.

更新日期/Last Update: 2020-09-10