[1]李 栋,张 蕾*,郭茂祖,等.基于时空卷积残差网络的空气质量预测[J].计算机技术与发展,2020,30(06):124-129.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 024]
 LI Dong,ZHANG Lei *,GUO Mao-zu,et al.Air Quality Prediction Based on Spatio-temporal Convolution Residual Network[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2020,30(06):124-129.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 024]
点击复制

基于时空卷积残差网络的空气质量预测()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30
期数:
2020年06期
页码:
124-129
栏目:
应用开发研究
出版日期:
2020-06-10

文章信息/Info

Title:
Air Quality Prediction Based on Spatio-temporal Convolution Residual Network
文章编号:
1673-629X(2020)06-0124-06
作者:
李 栋1 张 蕾1* 郭茂祖1 刘银龙2
1. 北京建筑大学 电气与信息工程学院,北京 100044; 2. 中国科学院 信息工程研究所,北京 100093
Author(s):
LI Dong1 ZHANG Lei1 * GUO Mao-zu1 LIU Yin-long2
1. School of Electrical and Information Engineering,Beijing University of Civil Engineering and Architecture,Beijing 100044,China;2. Institute of Information Engineering,Chinese Academy of Sciences,Beijing 100093,China
关键词:
城市计算时空数据空气质量指数卷积神经网络残差网络
Keywords:
urban computingspatio-temporal dataair quality indexconvolution neural networkresidual network
分类号:
TP399
DOI:
10. 3969 / j. issn. 1673-629X. 2020. 06. 024
摘要:
城市计算的数据具有鲜明的时空特性,即时间维度相似性与空间维度相近性的耦合关系,因此,对时空数据的分析和处理,已成为城市计算中亟需解决的热点问题。 面向城市污染中的空气质量问题,提出时空卷积残差网络(spatio-temporal convolution residual network, ST-ResNet) ,通过分析空气质量指数(air quality index,AQI) ,实现预测和预警。 时空卷积残差网络子组件是由以卷积层为基础的单元通过全等映射残差连接构成,将 AQI 数据通过空间转换组件转换成 AQI像素图,利用卷积运算捕获其空间特性;而时间趋势性、周期性和时间接近度等属性分别被三个子组件捕获,将三者的输出加权连接得到时空卷积残差网络并输出 AQI 的预测结果。最后,将 ST-ResNet 网络与经典的长短时记忆网络 (long short-term memory,LSTM) 进行对比,结果表明 ST-ResNet 网络在准确率上比 LSTM 网络提高了7% ,有望对城市环境监测预测和精细化管理提供理论依据和技术支撑。
Abstract:
The data of urban computing have distinct spatio-temporal characteristics, that is, the coupling relationship between the similarity of time dimension and the similarity of space dimension. Therefore,the analysis and processing of spatio-temporal data has become a hot topic that needs to be solv-ed in urban computing. Aiming at the problem of air quality in urban pollution,the spatio-temporal convolution residual network (ST-ResNet) is prop-osed to realize prediction and early warning by analyzing air quality index (AQI) . Sub-components in ST-ResNet are composed of unitCCFs based on convolution layer connected by congruent mapping residuals. AQI data are converted into AQI pixel maps by spatial conversion components,and their spatial characteristics are captured by convolution operation. Meanwhile,the time tendency,periodicity and time proximity are captured by three sub-components respectively,and their outputs are weighted connected to obtain the ST-ResNet and output the prediction results of AQI. Finally,by comparing the ST-ResNet with the classical long short-term memory network (LSTM) ,the results show that the accuracy of ST-ResNet is 7% higher than that of LSTM,which is expected to provide theoretical basis and technical support for urban environmental monitoring and prediction and fine management.

相似文献/References:

[1]黄伟航,王星捷.三维智慧校园系统的研究与实现[J].计算机技术与发展,2020,30(03):167.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 032]
 HUANG Wei-hang,WANG Xing-jie.Research and Implementation of 3D Intelligent Campus System[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2020,30(06):167.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 032]
[2]杨井荣,柳 军.基于有序树的时空关联规则数据挖掘的应用[J].计算机技术与发展,2021,31(06):19.[doi:10. 3969 / j. issn. 1673-629X. 2021. 06. 004]
 YANG Jing-rong,LIU Jun.Application of Spatiotemporal Association Rules Data MiningBased on Ordered Tree[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2021,31(06):19.[doi:10. 3969 / j. issn. 1673-629X. 2021. 06. 004]
[3]游 兰,张涵钰,韩凡宇,等.面向城市人群时空热点预测的混合神经网络[J].计算机技术与发展,2023,33(06):194.[doi:10. 3969 / j. issn. 1673-629X. 2023. 06. 029]
 YOU Lan,ZHANG Han-yu,HAN Fan-yu,et al.A Deep Hybrid Neural Network Model Oriented to Urban Crowd Spatio-temporal Hotspot Prediction[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2023,33(06):194.[doi:10. 3969 / j. issn. 1673-629X. 2023. 06. 029]

更新日期/Last Update: 2020-06-10