[1]张明军,俞文静,李伟滨,等.一种基于机器学习的车牌识别系统的设计[J].计算机技术与发展,2020,30(05):216-220.[doi:10. 3969 / j. issn. 1673-629X. 2020. 05. 041]
 ZHANG Ming-jun,YU Wen-jing,LI Wei-bin,et al.Design of License Plate Recognition System Based on Machine Learning[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2020,30(05):216-220.[doi:10. 3969 / j. issn. 1673-629X. 2020. 05. 041]
点击复制

一种基于机器学习的车牌识别系统的设计()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30
期数:
2020年05期
页码:
216-220
栏目:
应用开发研究
出版日期:
2020-05-10

文章信息/Info

Title:
Design of License Plate Recognition System Based on Machine Learning
文章编号:
1673-629X(2020)05-0216-05
作者:
张明军俞文静李伟滨朱晓丹
广州大学华软软件学院 网络技术系,广东 广州 510990
Author(s):
ZHANG Ming-junYU Wen-jingLI Wei-binZHU Xiao-dan
Department of Network Technology,South China Institute of Software Engineering,Guangzhou University,Guangzhou 510990,China
关键词:
车牌识别SVMLeNet-5系统设计
Keywords:
license plate recognitionSVMLeNet-5system design
分类号:
TP391
DOI:
10. 3969 / j. issn. 1673-629X. 2020. 05. 041
摘要:
以车牌识别的实用性为目的,设计一种鲁棒的车牌识别系统。 首先提出了 Sobel-Color 算法,以 Sobel 边缘和颜色两种特征进行车牌定位,并结合 MSER 算法,设计了一种可靠的车牌定位方法来获取候选车牌区域,然后采用 SVM 算法对候选车牌区域进行车牌判断;最后根据车牌特征设计了一种车牌字符分割算法,能正确分割车牌的各个字符,并有效地去除车牌边缘部分的虚假字符,又根据分割出的车牌字符特征对 LeNet-5 深度网络模型进行改进,然后采用改进的 LeNet-5 网络对车牌字符进行识别。 对设计的车牌识别系统进行了正常条件测试、恶劣条件测试以及效率测试等实验,实验结果表明设计的车牌定位和车牌判断方法具有较高的可靠性,车牌字符识别具有较高的准确率,因而设计的车牌识别系统具有较好的鲁棒性和实用性。
Abstract:
Aiming at the practicability of license plate recognition,a robust license plate recognition system is designed. Firstly, Sobel-Color algorithm is proposed to locate license plate based on Sobel edge and color features,and combined with MSER algorithm, a reliable license plate location method is designed to obtain candidate license plate regions, and then the SVM algorithm is used to judge them. Finally,a license plate character segmentation algorithm is designed according to the license plate characteristics,which can segment the characters of the license plate correctly,and effectively remove the false characters of the edge of the license plate. According to the characteristics of the license plate characters,the LeNet-5 depth network model is improved,which is used to recognize the license plate characters. The normal condition test,harsh condition test and efficiency test of the license plate recognition system are carried out. The experiment shows that the method of license plate location and license plate judgment has high reliability,and the license plate character recognition has high accuracy. Therefore,the designed license plate recognition system has better robustness and practicability.

相似文献/References:

[1]邹星.一种基于模板库的车牌字符识别算法[J].计算机技术与发展,2010,(04):128.
 ZOU Xing.A License Plate Character Recognition Arithmetic Based on Template Library[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2010,(05):128.
[2]钱秋银 张正兰.一种基于多分类SVM的相关反馈图像检索方法[J].计算机技术与发展,2009,(08):65.
 QIAN Qiu-yin,ZHANG Zheng-lan.One Method of Relevance Feedback Image Retrieval Based on Multi - Classification SVM[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2009,(05):65.
[3]杨述斌 张阳.复杂车辆图像中的车牌快速形态定位算法[J].计算机技术与发展,2008,(06):50.
 YANG Shu-bin,ZHANG Yang.Fast Morphological Locating Algorithm of Vehicle License Plate in Complex Vehicle Images[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2008,(05):50.
[4]袁芬萍 季桂树.基于SVM的三阶段人脸检测方法的研究与应用[J].计算机技术与发展,2007,(09):133.
 YUAN Fen-ping,JI Gui-shu.Research and Application about Three- Stage Face Detection Method Based on SVM[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2007,(05):133.
[5]宓浩 张燕平.基于特征投影和交叉覆盖神经网络的车牌识别[J].计算机技术与发展,2007,(10):76.
 MI Hao,ZHANG Yan-ping.License Plate Location Based on Projection Character and Alternate Covering Neural Network[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2007,(05):76.
[6]李波 曾致远 周建中 罗勤.车牌识别系统研究与实现[J].计算机技术与发展,2006,(06):10.
 LI Bo,ZENG Zhi-yuan,ZHOU Jian-zhong,et al.Study and Realization for License Plate Recognition System[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2006,(05):10.
[7]孟晓莉 赵安军 马光思.基于数学形态学的车牌定位研究与实现[J].计算机技术与发展,2010,(11):84.
 MENG Xiao-li,ZHAO An-jun,MA Guang-si.Car License Plate Location Research and Implementation Based on Mathematical Morphology[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2010,(05):84.
[8]戴林 姜梅.基于半监督学习的入侵检测系统[J].计算机技术与发展,2011,(01):162.
 DAI Lin JIANG Mei.Semi-Supervised Learning-Based Network Intrusion Detection System[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2011,(05):162.
[9]孔超 高珏 陈开云[] 许华虎[].基于多特征的车辆一致性检测的研究与应用[J].计算机技术与发展,2012,(03):31.
 KONG Chao,GAO Jue,CHEN Kai-yun,et al.Target Multi-Feature Based Consistency Checking of Vehicles[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2012,(05):31.
[10]霍玲玲,徐文军,赵云青,等.嵌入式车牌识别系统的设计与实现[J].计算机技术与发展,2013,(04):206.
 HUO Ling-ling,XU Wen-jun,ZHAO Yun-qing,et al.Design and Implementation of an Embedded System of Vehicle License Plate Recognition[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2013,(05):206.
[11]陈 政,李良荣*,李 震,等.基于机器学习的车牌识别技术研究[J].计算机技术与发展,2020,30(06):13.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 003]
 CHEN Zheng,LI Liang-rong*,LI Zhen,et al.Research on License Plate Recognition Technology Based on Machine Learning[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2020,30(05):13.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 003]

更新日期/Last Update: 2020-05-10