[1]汤斯鹏,池鸿源,张培炜,等.深度学习识别光网络单元故障的设计与应用[J].计算机技术与发展,2020,30(05):211-215.[doi:10. 3969 / j. issn. 1673-629X. 2020. 05. 040]
 TANG Si-peng,CHI Hong-yuan,ZHANG Pei-wei,et al.Design and Application of Identifying Malfunctions in Optical Network Units Based on Deep Learning[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2020,30(05):211-215.[doi:10. 3969 / j. issn. 1673-629X. 2020. 05. 040]
点击复制

深度学习识别光网络单元故障的设计与应用()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30
期数:
2020年05期
页码:
211-215
栏目:
应用开发研究
出版日期:
2020-05-10

文章信息/Info

Title:
Design and Application of Identifying Malfunctions in Optical Network Units Based on Deep Learning
文章编号:
1673-629X(2020)05--0211-05
作者:
汤斯鹏1 池鸿源1 张培炜1 张炳华2 蔡 毅3
1. 中国移动通信集团广东有限公司 AI 能力支撑中心,广东 汕头 515000; 2. 中国移动通信集团广东有限公司 AI 能力支撑中心,广东 广州 510000; 3. 华南理工大学 软件学院,广东 广州 510000
Author(s):
TANG Si-peng1 CHI Hong-yuan1 ZHANG Pei-wei1 ZHANG Bing-hua2 CAI Yi3
1. AI Capability Support Center of China Mobile Communications Group Guangdong Co. ,Ltd. ,Shantou 515000,China; 2. AI Capability Support Center of China Mobile Communications Group Guangdong Co. ,Ltd. ,Guangzhou 510000,China; 3. School of Software Enginee
关键词:
深度学习物体检测图片分类客户服务光网络单元
Keywords:
deep learningobject detectionimage classificationcustomer serviceoptical network unit
分类号:
TP391. 4
DOI:
10. 3969 / j. issn. 1673-629X. 2020. 05. 040
摘要:
为解决依赖装维上门鉴别光网络单元故障带来的不便, 可以从机器视觉入手实现自动化故障识别。 近年,ImageNet 挑战赛的成功推动了物体识别技术的跨越式发展,特别是基于卷积的深度学习技术在视觉识别方面已经达到人类水平,为光网络单元故障的自动识别提供了技术基础。 文章对识别光网络单元的工作状态进行了研究,将设备工作状态分为 7 个场景,提出了利用手机 APP 采集图片识别故障的解决方案并投入了实际生产;重点阐述了深度学习模块的设计与实现,提出一种通过算法整合的方式综合运用物体检测和图像分类算法,分 3 阶段逐步求精,解决了图片过滤,光网络单元型号和状态识别等问题,实现了基于计算机视觉自动识别光网络单元故障。 从数据上看产品的端到端准确率超过84% ,识别速度达到 10 FPS,月均提供服务超过 1 万人次,在减少用户等待的同时节约了人力资源。
Abstract:
To solve the inconvenience caused by the failure of the manual identification optical network unit,automatic fault identification can be realized from machine vision. The success of the ImageNet Challenge has promoted the leap-forward development of object recognition technology, especially the convolution - based deep learning technology has reached the human level in visual recognition,providing a technical basis for automatic identification of optical network unit malfunctions. We study the working status of optical network units,divide   the working status of equipment into seven scenarios,and put forward a solution of using the mobile phone APP to collect pictures to identify faults and put it into actual production. We focus on the design and implementation of the deep learning module and propose a comprehensive method of object detection and image classification by algorithm integration, which is in three stages,solving the problems of image filtering,optical network unit model and status recognition,and finally achieving the automatic identification of optical network unit faults based on computer vision.Saving human resources while reducing user waiting, the end-to-end accuracy rate of the product exceeds 84% ,the recognition speed reaches 10 FPS,and the monthly service provides more than 10 000 times.

相似文献/References:

[1]郑权,刘循,魏海明.基于学习的霍夫变换线段组物体检测算法[J].计算机技术与发展,2014,24(01):26.
 ZHENG Quan,LIU Xun,WEI Hai-ming.An Object Detection Algorithm of Hough Transform Line Segmentation Groups Based on Learning[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2014,24(05):26.
[2]艾玲梅,叶雪娜.基于循环卷积神经网络的目标检测与分类[J].计算机技术与发展,2018,28(02):31.[doi:10.3969/j.issn.1673-629X.2018.02.008]
 AI Ling-mei,YE Xuena.Object Detection and Classification Based on Circular Convolutional Neural Network[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2018,28(05):31.[doi:10.3969/j.issn.1673-629X.2018.02.008]
[3]陈强锐,谢世朋.基于深度学习的肺部肿瘤检测方法[J].计算机技术与发展,2018,28(04):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
 CHEN Qiang-rui,XIE Shi-peng.Lung Cancer Detection Method Based on Deep Learning[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2018,28(05):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
[4]施泽浩,赵启军.基于全卷积网络的目标检测算法[J].计算机技术与发展,2018,28(05):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
 SHI Ze-hao,ZHAO Qi-jun.Object Detection Algorithm Based on Fully Convolutional Neural Network[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2018,28(05):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
[5]黄法秀,张世杰,吴志红,等.数据增广下的人脸识别研究[J].计算机技术与发展,2020,30(03):67.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
 HUANG Fa-xiu,ZHANG Shi-jie,WU Zhi-hong,et al.Research on Face Recognition Based on Data Augmentation[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2020,30(05):67.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
[6]陈浩翔,蔡建明,刘铿然,等. 手写数字深度特征学习与识别[J].计算机技术与发展,2016,26(07):19.
 CHEN Hao-xiang,CAI Jian-ming,LIU Keng-ran,et al. Deep Learning and Recognition of Handwritten Numeral Features[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2016,26(05):19.
[7]高翔,陈志,岳文静,等.基于视频场景深度学习的人物语义识别模型[J].计算机技术与发展,2018,28(06):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
 GAO Xiang,CHEN Zhi,YUE Wen-jing,et al.Human Semantic Recognition Model Based on Video Scene Deep Learning[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2018,28(05):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
[8]贺飞翔,赵启军. 基于深度学习的头部姿态估计[J].计算机技术与发展,2016,26(11):1.
 HE Fei-xiang,ZHAO Qi-jun. Head Pose Estimation Based on Deep Learning[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2016,26(05):1.
[9]徐 融,邱晓晖.一种改进的 YOLO V3 目标检测方法[J].计算机技术与发展,2020,30(07):30.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 007]
 XU Rong,QIU Xiao-hui.An Improved YOLO V3 Object Detection[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2020,30(05):30.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 007]
[10]曾志平[] [],萧海东[],张新鹏[]. 基于DBN的金融时序数据建模与决策[J].计算机技术与发展,2017,27(04):1.
 ZENG Zhi-ping[] [],XIAO Hai-dong[],ZHANG Xin-peng[]. Modeling and Decision-making of Financial Time Series Data with DBN[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2017,27(05):1.

更新日期/Last Update: 2020-05-10