[1]张可颖,龙士工,吕尚青,等.基于粗糙集的容器云系统健康度评价建模[J].计算机技术与发展,2020,30(04):63-68.[doi:10. 3969 / j. issn. 1673-629X. 2020. 04. 012]
 ZHANG Ke-ying,LONG Shi-gong,LYU Shang-qing,et al.Modeling of Health Evaluation of Container Cloud System Based on Rough Set[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2020,30(04):63-68.[doi:10. 3969 / j. issn. 1673-629X. 2020. 04. 012]
点击复制

基于粗糙集的容器云系统健康度评价建模()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30
期数:
2020年04期
页码:
63-68
栏目:
智能、算法、系统工程
出版日期:
2020-04-10

文章信息/Info

Title:
Modeling of Health Evaluation of Container Cloud System Based on Rough Set
文章编号:
1673-629X(2020)04-0063-06
作者:
张可颖1 龙士工23 吕尚青4 吕晓丹3
1. 贵州大学 大数据与信息工程学院,贵州 贵阳 550025; 2. 贵州大学 贵州省公共大数据重点实验室,贵州 贵阳 550025; 3. 贵州大学 计算机科学与技术学院,贵州 贵阳 550025; 4. 北京邮电大学 信息与通信工程学院,北京 100000
Author(s):
ZHANG Ke-ying1 LONG Shi-gong23 LYU Shang-qing4 LYU Xiao-dan3
1. School of Big Data and Information Engineering,Guizhou University,Guiyang 550025,China; 2. Guizhou Provincial Key Laboratory of Public Big Data,Guizhou University,Guiyang 550025,China; 3. School of Computer Science and Technology,Guizhou University,Gui
关键词:
系统健康度粗糙集信息熵云平台
Keywords:
system healthrough setinformation entropycloud platform
分类号:
TP319
DOI:
10. 3969 / j. issn. 1673-629X. 2020. 04. 012
摘要:
现在容器云平台容器数目日益增加,相关监控数据爆炸式增长,而现有的运行在容器内的微服务监控软件监控指标不仅种类繁多,配置繁琐,并且往往只是直接给出监控数据,没有根据得到的监控指标对系统的健康度进行度量。 针对该问题,提出了一种新的基于粗糙集的容器云系统健康度评价模型。 通过建立的粗糙集云系统健康度评价模型,可以直观地反映整个集群的健康程度。 首先通过信息熵对监控到的连续属性进行断点分割,离散化处理,然后利用粗糙集理论实现对监控数据进行知识约简、一致性检查和决策表建立,从而建立了基于粗糙集和信息熵的集群健康度指标模型。 最后,通过 Kubernetes 容器云平台分别进行计算密集负载和网络密集负载仿真实验,实验结果表明,该模型能够反映集群的性能和对异常进行检测。
Abstract:
Now the number of containers of container cloud platform is increasing, and the related monitoring data is exploding. The existing monitoring indicators of micro-service monitoring software running in the container are not only diverse and complicated to configure,but also often just give monitoring data directly without measuring the health of the system based on the monitoring indicators obtained. For this,a new rough set based container cloud system health evaluation model is proposed,by which the health of the entire cluster can be intuitively reflected. Firstly, through the information entropy, the monitored continuous attributes are segmented and discretized. And then the knowledge reduction,consistency check and decision table establishment of monitoring data are completed by using rough set theory,so as to establish a cluster health indicator model based on rough set and information entropy. Finally,the computational intensive load and network intensive load simulation experiments are carried out through the Kubernetes container cloud platform,which show that this model can reflect the performance of the cluster and detect the anomaly.

相似文献/References:

[1]夏奇思 王汝传.基于属性约简的粗糙集海量数据分割算法研究[J].计算机技术与发展,2010,(04):5.
 XIA Qi-si,WANG Ru-chuan.Mass Data Partition for Rough Set on Attribute Reduction Algorithm[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2010,(04):5.
[2]张政超 关欣[] 何友 李应升 郭伟峰.粗糙集理论数据处理方法及其研究[J].计算机技术与发展,2010,(04):12.
 ZHANG Zheng-chao,GUAN Xin[],HE You,et al.Rough Sets Data Processing Method and Its Research[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2010,(04):12.
[3]杨乐婵 邓松 徐建辉.基于BP网络的洪灾风险评价算法[J].计算机技术与发展,2010,(04):232.
 YANG Le-chan,DENG Song,XU Jian-hui.Flood Risk Evaluation Algorithm on BP Net[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2010,(04):232.
[4]张学友 苗强 毛军军.基于粗糙度的一种分形维数计算方法[J].计算机技术与发展,2010,(05):136.
 ZHANG Xue-you,MIAO Qiang,MAO Jun-jun.A Calculation Method of Fractal Dimension Based on Roughness[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2010,(04):136.
[5]王伟 高亮 吴涛.粗糙集在经济分析中的应用[J].计算机技术与发展,2008,(04):158.
 WANG Wei,GAO Liang,WU Tao.Application of Rough Set in Economic Analysis[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2008,(04):158.
[6]李学文 王小刚.优势信息系统的属性约简算法[J].计算机技术与发展,2009,(08):107.
 LI Xue-wen,WANG Xiao-gang.Algorithm on Attribute Reduction in Dominance Information System Based on Dominance Relation[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2009,(04):107.
[7]徐沈 吴涛[] 李国成.产业结构调整的量化分析[J].计算机技术与发展,2009,(08):178.
 XU Shen,WU Tao,LI Guo-cheng.Quantitative Analysis on Adjustment of Industrial Structure[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2009,(04):178.
[8]申锦标 吕跃进.粗糙集的近似约简及其算法[J].计算机技术与发展,2009,(12):17.
 SHEN Jin-biao,LU Yue-jin.A Rough Set of Approximate Attribute Reduction and Its Algorithm[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2009,(04):17.
[9]王小菊 蒋芸 李永华.基于依赖度之差的属性重要性评分[J].计算机技术与发展,2009,(01):67.
 WANG Xiao-ju,JIANG Yun,LI Yong-hua.Significance of Attribute Evaluation Based on Dependable Difference[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2009,(04):67.
[10]汪小燕 杨思春.基于改进的二进制可辨矩阵的核增量式更新方法[J].计算机技术与发展,2009,(01):97.
 WANG Xiao-yan,YANG Si-chun.An Incremental Updating Approach to Compute a Core Based on Improved Binary Discernable Matrix[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2009,(04):97.

更新日期/Last Update: 2020-04-10