[1]骆梅柳,裴可锋.大数据下的基于主题模型的社交网络链接预测[J].计算机技术与发展,2020,30(04):36-40.[doi:10. 3969 / j. issn. 1673-629X. 2020. 04. 007]
 LUO Mei-liu,PEI Ke-feng.Social Networking Link Prediction Based on Topic Model under Big Data[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2020,30(04):36-40.[doi:10. 3969 / j. issn. 1673-629X. 2020. 04. 007]
点击复制

大数据下的基于主题模型的社交网络链接预测()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30
期数:
2020年04期
页码:
36-40
栏目:
智能、算法、系统工程
出版日期:
2020-04-10

文章信息/Info

Title:
Social Networking Link Prediction Based on Topic Model under Big Data
文章编号:
1673-629X(2020)04-0036-05
作者:
骆梅柳12 裴可锋1
1. 南京航空航天大学,江苏 南京 211106; 2. 江苏财会职业学院 信息系,江苏 连云港 222061
Author(s):
LUO Mei-liu12 PEI Ke-feng1
1. Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China; 2. Department of Information,Jiangsu College of Finance & Accounting,Lianyungang 222061,China
关键词:
大数据网络链接主题模型命名实体联系特征
Keywords:
big datanetworking linktopic modelnamed entityconnection characteristics
分类号:
TP31
DOI:
10. 3969 / j. issn. 1673-629X. 2020. 04. 007
摘要:
计算机技术和网络的发展使得数据呈爆炸式的涌现,社交媒体不断融入到人们的生活中,社会网络分析已成为研究的热点。 随着大数据时代的到来,对社交网络链接算法研究产生巨大影响,原有的基于网络结构的预测方法已经渐渐不适应现状。 因此,提出了一种基于主题模型的社交网络链接预测方法。 首先以微博社交网络为数据源,将实验网络分为测试集和训练集;其次利用主题模型得到用户的主题特征,结合命名实体集和用户联系特征集合得到用户的兴趣特征相似性度量,加上网络结构相似性从而得到用户节点相似度,进而对社交网络链接进行预测;最终使用链接预测最常用的评价体系 AUC 来评价链接预测方法的效果。 通过实验验证,该方法的预测准确率更高。
Abstract:
With the development of computer technology and network,data emerge explosively,and social media constantly integrate into people’s life. Social network analysis has become a research hotspot. With the advent of big data era,the research on social network link algorithm has a great impact. The original network structure-based prediction method has gradually become unsuitable for the status quo.Therefore,we propose a social network link prediction method based on topic model. Firstly,the experimental network is divided into test set and training set with the Microblog social network as the data source. Secondly, the topic model is used to obtain users’ topic features,and the similarity measure of users’ interest features is obtained by combining the named entity set and the user associationfeature set. Moreover,the similarity degree of user nodes is obtained by combining the network structure similarity,so as to predict the social network links. Finally,the link prediction method is evaluated by AUC,the most common evaluation system of link prediction. The experiment shows that the proposed method has higher prediction accuracy.

相似文献/References:

[1]严霄凤,张德馨.大数据研究[J].计算机技术与发展,2013,(04):168.
 YAN Xiao-feng,ZHANG De-xin.Big Data Research[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2013,(04):168.
[2]王雷,陈彦先,袁哲,等. 面向预拌混凝土行业的云计算[J].计算机技术与发展,2014,24(08):14.
 WANG Lei,CHEN Yan-xian,YUAN Zhe JI Xu. Research on Cloud Computing for Ready-mixed Concrete Industry[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2014,24(04):14.
[3]金宗泽,冯亚丽,文必龙,等. 大数据分析流程框架的研究[J].计算机技术与发展,2014,24(08):117.
 JIN Zong-ze,FENG Ya-l,WEN Bi-long,et al. Research on Framework of Big Data Analytic Process[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2014,24(04):117.
[4]张也弛,周文钦,石润华. 一种面向云的大数据完整性检测协议[J].计算机技术与发展,2014,24(09):68.
 ZHANG Ye-chi,ZHOU Wen-qin,SHI Run-hua. A Big Data Integrity Checking Protocol for Cloud[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2014,24(04):68.
[5]谢怡,王航,刘新瀚,等. 大数据环境下数据读取关键技术研究[J].计算机技术与发展,2015,25(02):113.
 XIE Yi,WANG Hang,LIU Xin-han,et al. Research on Data Reading Techniques Based on Big Data Environment[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2015,25(04):113.
[6]付燕平,罗明宇,刘其军. 大数据三维模型快速显示技术研究[J].计算机技术与发展,2015,25(05):87.
 FU Yan-ping,LUO Ming-yu,LIU Qi-jun. Research on Fast Display Technology for Big Data Three-dimensional Model[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2015,25(04):87.
[7]赵震,任永昌. 大数据时代基于云计算的电子政务平台研究[J].计算机技术与发展,2015,25(10):145.
 ZHAO Zhen,REN Yong-chang. Research on E-government Platform Based on Cloud Computing in Big Data Era[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2015,25(04):145.
[8]胡存刚,程莹. 基于粒子群算法的大数据智能搜索引擎的研究[J].计算机技术与发展,2015,25(12):14.
 HU Cun-gang,CHENG Ying. Research on Big Data Intelligent Search Engine Based on PSO[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2015,25(04):14.
[9]孔钦,叶长青,孙赟.大数据下数据预处理方法研究[J].计算机技术与发展,2018,28(05):1.[doi:10.3969/j.issn.1673-629X.2018.05.001]
 KONG Qin,YE Changqing,SUN Yun.Research on Data Preprocessing Methods for Big Data[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2018,28(04):1.[doi:10.3969/j.issn.1673-629X.2018.05.001]
[10]杨明,李铁冰,姜茸,等.基于AHP 的大数据可用性及挖掘方案模型研究[J].计算机技术与发展,2018,28(05):51.[doi:10.3969/j.issn.1673-629X.2018.05.012]
 YANG Ming,LI Tie-bing,JIANG Rong,et al.Research on Model of Big Data Usability and Mining Strategy Based on AHP[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2018,28(04):51.[doi:10.3969/j.issn.1673-629X.2018.05.012]

更新日期/Last Update: 2020-04-10