[1]叶 硕,褚 钰,王 祎,等.语音识别中声学模型研究综述[J].计算机技术与发展,2020,30(03):181-186.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 035]
 YE Shuo,CHU Yu,WANG Yi,et al.Summary of Acoustic Models in Speech Recognition[J].Computer Technology and Development,2020,30(03):181-186.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 035]
点击复制

语音识别中声学模型研究综述()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30
期数:
2020年03期
页码:
181-186
栏目:
应用开发研究
出版日期:
2020-03-10

文章信息/Info

Title:
Summary of Acoustic Models in Speech Recognition
文章编号:
1673-629X(2020)03-0181-06
作者:
叶 硕褚 钰王 祎李田港
武汉邮电科学研究院,湖北 武汉 430000
Author(s):
YE ShuoCHU YuWANG YiLI Tian-gang
Wuhan Research Institute of Posts and Telecommunications,Wuhan 430000,China
关键词:
语音识别声学模型神经网络深度学习
Keywords:
speech recognitionacoustic modelneural networkdeep learning
分类号:
TP181
DOI:
10. 3969 / j. issn. 1673-629X. 2020. 03. 035
摘要:
智能语音技术包含语音识别、自然语言处理、语音合成三个方面的内容,其中语音识别是实现人机交互的关键技术,识别系统通常需要建立声学模型和语言模型。 神经网络的兴起使声学模型数量急剧增加,基于神经网络的声学模型 与传统识别模型相结合的方式,极大地推动了语音识别的发展。 语音识别作为人机交互的前端,具有许多研究方向,文中着重对语音识别任务中的文本识别、说话人识别、情绪识别三个方向的声学模型研究现状进行归纳总结,尽可能对语音识 别技术的演化进行细致介绍,为以后的相关研究提供有价值的参考。 同时对目前语音识别的主流方法进行概括比较,介绍了端到端的语音识别模型的优势,并对发展趋势进行分析展望,最后提出当前语音识别任务中面临的挑战。
Abstract:
Intelligent speech technology includesspeech recognition,natural languageprocessing and speech synthesis. Speech recognition isakey technology forhuman-computerinteraction,and theacousticmodel and languagemodel areusually needed to establish forrecognition system. The rise of neural network leads to a sharp increase in acoustic models. The combination of acoustic models based on neural network and traditional recognition models greatly promotes the development of speech recognition. As the front end of humancomputer interaction,speech recognition has many research directions. In this study,we mainly summarize the current research status of acoustic models in three directions of text recognition,speaker recognition and emotion recognition,and make a detailed introduction of the evolution of speech recognition technology as far as possible,so as to provide valuable reference for the related research in the future. At the same time,we generalize and compare the main methods of speech recognition,introduce the advantages of the end-to-end speech recognition model,analyze the development trend and present the challenges in the current speech recognition tasks at the end.

相似文献/References:

[1]宋鑫坤 陈万米 朱明 桂春胜 程硕远 陈海波.基于正则表达式的语音识别控制策略研究[J].计算机技术与发展,2010,(02):106.
 SONG Xin-kun,CHEN Wan-mi,ZHU Ming,et al.Study on Speech Recognition Control Strategy Based on Regular Expression[J].Computer Technology and Development,2010,(03):106.
[2]石现峰 张学智 张峰.基于HTK的语音识别系统设计[J].计算机技术与发展,2006,(10):37.
 SHI Xian-feng,ZHANG Xue-zhi,ZHANG Feng.Design of Speech Recognition System Based on HTK[J].Computer Technology and Development,2006,(03):37.
[3]朱宇 宋艳.嵌入式语音识别系统特征参数提取研究[J].计算机技术与发展,2011,(07):246.
 ZHU Yu,SONG Yan.Research of Characteristic Parameters Extraction Based on Embedded Speech Recognition System[J].Computer Technology and Development,2011,(03):246.
[4]林鸣霄.基于SpeechSDK的语音识别技术在三维仿真中的应用[J].计算机技术与发展,2011,(11):160.
 LIN Ming-xiao.Application of Speech Recognition Technology in 3D Simulation Based on Speech SDK[J].Computer Technology and Development,2011,(03):160.
[5]李克粉,王直.改进的小波阈值去噪在语音识别中的应用[J].计算机技术与发展,2013,(05):231.
 LI Ke-fen,WANG Zhi.Application of Improved Wavelet Threshold Denoising in Speech Recognition[J].Computer Technology and Development,2013,(03):231.
[6]王海洋,郭星. 基于语音识别的智慧旅游系统研究[J].计算机技术与发展,2015,25(05):143.
 WANG Hai-yang,GUO Xing. Study on Smart Tourism System Based on Voice Recognition[J].Computer Technology and Development,2015,25(03):143.
[7]孙科学[] [],洪櫆[],章康宁[],等. 一种联合检测门禁系统的设计与实现[J].计算机技术与发展,2016,26(01):155.
 SUN Ke-xue[][],HONG Kui[],ZHANG Kang-ning[],et al. Design and Implementation of Joint Detection Access Control System[J].Computer Technology and Development,2016,26(03):155.
[8]韩志艳,王健. 基于共振峰曲线的语音信号动态特征提取方法[J].计算机技术与发展,2017,27(06):72.
 HAN Zhi-yan,WANG Jian. Dynamic Feature Extraction for Speech Signal Based on Formant Curve[J].Computer Technology and Development,2017,27(03):72.
[9]李全兵,文 钊*,田艳梅*,等.基于 WGAN 的音频关键词识别研究[J].计算机技术与发展,2021,31(08):26.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 005]
 LI Quan-bing,WEN Zhao *,TIAN Yan-mei *,et al.Research on Audio Keywords Recognition Based on WassersteinGenerative Adversarial Network[J].Computer Technology and Development,2021,31(03):26.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 005]
[10]伍静,刘德丰,张松,等.智能摔倒检测监控系统设计[J].计算机技术与发展,2018,28(04):6.[doi:10.3969/ j. issn.1673-629X.2018.04.002]
 WU Jing,LIU De-feng,ZHANG Song,et al.Design of an Intelligent Monitoring System for Tumble Detection[J].Computer Technology and Development,2018,28(03):6.[doi:10.3969/ j. issn.1673-629X.2018.04.002]

更新日期/Last Update: 2020-03-10