[1]任飞凯,邱晓晖.基于 LBP 和数据扩充的 CNN 人脸识别研究[J].计算机技术与发展,2020,30(03):62-66.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 012]
 REN Fei-kai,QIU Xiao-hui.Research on Face Recognition of CNN Based on LBP and Data Expansion[J].Computer Technology and Development,2020,30(03):62-66.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 012]
点击复制

基于 LBP 和数据扩充的 CNN 人脸识别研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30
期数:
2020年03期
页码:
62-66
栏目:
智能、算法、系统工程
出版日期:
2020-03-10

文章信息/Info

Title:
Research on Face Recognition of CNN Based on LBP and Data Expansion
文章编号:
1673-629X(2020)03-0062-05
作者:
任飞凯邱晓晖
南京邮电大学 通信与信息工程学院,江苏 南京 210003
Author(s):
REN Fei-kaiQIU Xiao-hui
School of Telecommunications & Information Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210003,China
关键词:
CNNLBP数据集扩充人脸识别
Keywords:
CNNLBPdataset expansionface recognition
分类号:
TP391
DOI:
10. 3969 / j. issn. 1673-629X. 2020. 03. 012
摘要:
针对卷积神经网络在人脸识别存在的数据集比较少,容易发生过拟合的问题,提出对人脸进行局部二值模式处 理,提升图像特征,再引入深度卷积生成对抗网络对局部二值化的人脸进行生成,有效扩充数据集,提升卷积神经网络的 泛化能力。 该人脸识别卷积神经网络模型包括3层卷积层,3层池化层,1个全连接层,1个Softmax分类回归层。 仿真实 验中,选取ORL人脸数据库中40人每人10张的人脸图像按8:1:1比例设置为训练集、验证集和测试集,并选取Yale人 脸数据库中15人每人11张的人脸图像按9:1:1的比例设置训练集、验证集和测试集,通过LBP算法提取人脸纹理特征 对其进行生成,分别扩充数据集至990张和2200张。 结果表明,该算法的人脸识别率不仅高于未扩充数据PCA和LBP等 传统人脸识别方法的识别率,而且也将卷积神经网络的识别率提升了约2%,有效提高了泛化能力。
Abstract:
In view of the problem that convolutional neural network has few data sets in face recognition and is prone to over-fitting,the local binary mode processing is carried out to enhance the image features,and the deep convolution generation is introduced to generate the anti-network to generate the local binarized face,which effectively expands the data set and improves the generalization of the convolutional neural network. This convolutional neural network model of face recognition consists of 3-layer convolutional layer,3-layer pooling layer,a fully connected layer and a Softmax classification regression layer. In the simulation experiment,the10 face images of each of 40 people in the ORL face database are selected as the training set,verification set and test set according to the ratio of 8:1:1, and11 face images of each of 15 people in the Yale face database are selected as the training set,verification set and test set according to the ratio of 9:1:1. The face texture features are extracted by LBP algorithm to generate them,and the data set is expanded to 990 sheets and 2200 sheets respectively. The results show that the face recognition rate of the proposed algorithm is not only higher than that of the traditional face recognition methods such as unexpanded data PCA and LBP,but also the recognition rate of the convolutional neural network is increased by about 2%,which effectively improves its generalization.

相似文献/References:

[1]刘广东,邱晓晖.基于多模式LBP 与深度森林的指静脉识别[J].计算机技术与发展,2018,28(07):83.[doi:10.3969/ j. issn.1673-629X.2018.07.018]
 LIU Guang-dong,QIU Xiao-hui.Finger Vein Recognition Based on Multi-mode LBP and Deep Forest[J].Computer Technology and Development,2018,28(03):83.[doi:10.3969/ j. issn.1673-629X.2018.07.018]
[2]赵胜,赵学健,张欣慧,等.基于Sobel 算子和 CNN 的车辆轨迹识别系统[J].计算机技术与发展,2018,28(07):169.[doi:10.3969/ j. issn.1673-629X.2018.07.036]
 ZHAO Sheng,ZHAO Xue-jian,ZHANG Xin-hui,et al.Vehicle Trajectory Recognition System Based on Sobel Operator and CNN[J].Computer Technology and Development,2018,28(03):169.[doi:10.3969/ j. issn.1673-629X.2018.07.036]
[3]高 强,潘 俊,洪锐锋.基于 CNN 的机场安检危险品自动识别研究[J].计算机技术与发展,2019,29(10):95.[doi:10. 3969 / j. issn. 1673-629X. 2019. 10. 020]
 GAO Qiang,PAN Jun,HONG Rui-feng.Research on Automatic Recognition of Dangerous Goods in Airport Security Inspection Based on CNN[J].Computer Technology and Development,2019,29(03):95.[doi:10. 3969 / j. issn. 1673-629X. 2019. 10. 020]
[4]王新美,丁爱玲,雷梦宁,等.基于 CNN 和 SVM 融合的交通标志识别[J].计算机技术与发展,2020,30(06):7.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 002]
 WANG Xin-mei,DING Ai-ling,LEI Meng-ning,et al.Traffic Sign Recognition Based on Combination of CNN and SVM[J].Computer Technology and Development,2020,30(03):7.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 002]
[5]何烨辛,谷 林,孙 晨.基于CNN的程序编译错误信息特征提取[J].计算机技术与发展,2021,31(05):204.[doi:10. 3969 / j. issn. 1673-629X. 2021. 05. 035]
 ,CNN-basedProgram CompilationErrorMessageFeatureExtractio[J].Computer Technology and Development,2021,31(03):204.[doi:10. 3969 / j. issn. 1673-629X. 2021. 05. 035]
[6]苏魁麟,张 凯,吕学强,等.基于融合模型的名词隐喻识别[J].计算机技术与发展,2022,32(06):192.[doi:10. 3969 / j. issn. 1673-629X. 2022. 06. 032]
 SU Kui-lin,ZHANG Kai,LYU Xue-qiang,et al.Noun Metaphor Recognition Based on Fusion Model[J].Computer Technology and Development,2022,32(03):192.[doi:10. 3969 / j. issn. 1673-629X. 2022. 06. 032]

更新日期/Last Update: 2020-03-10