[1]徐龙飞,郁进明.不同优化器在高斯噪声下对 LR 性能影响的研究[J].计算机技术与发展,2020,30(03):7-12.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 002]
 XU Long-fei,YU Jin-ming.Study on Influence of Different Optimizers on Performance of LR under Gaussian Noise[J].Computer Technology and Development,2020,30(03):7-12.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 002]
点击复制

不同优化器在高斯噪声下对 LR 性能影响的研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30
期数:
2020年03期
页码:
7-12
栏目:
智能、算法、系统工程
出版日期:
2020-03-10

文章信息/Info

Title:
Study on Influence of Different Optimizers on Performance of LR under Gaussian Noise
文章编号:
1673-629X(2020)03-0007-06
作者:
徐龙飞郁进明
东华大学 信息科学与技术学院,上海 201620
Author(s):
XU Long-feiYU Jin-ming
School of Information Science and Technology,Donghua University,Shanghai 201620,China
关键词:
机器学习线性回归优化器损失函数高斯噪声
Keywords:
machine learninglinear regressionoptimizerloss functionGaussian noise
分类号:
TP301.6
DOI:
10. 3969 / j. issn. 1673-629X. 2020. 03. 002
摘要:
目前机器学习算法已经应用到社会的各个领域,如数据挖掘、信息个性化推荐和自然语言处理等,在人们的工作 和生活中起到了重要作用。 线性回归模型(LR)是常见的机器学习算法的一种,具有使用简单,容易理解,便于执行等特 点,但在加入噪声干扰的情况下模型性能会受到较大影响。 LR的优化方式包括批量梯度下降(BGD)、随机梯度下降 (SGD)、小批量梯度下降(MBGD)和Adam优化器等,最终训练后的模型性能受到优化方式、学习率、噪声等诸多因素的影 响。 为了研究在加入高斯噪声的情况下如何选择优化器来改善LR模型的性能,使用了Python语言和TensorFlow框架,通 过比较几种优化器的损失函数和计算时间来研究加入高斯噪声后对LR模型性能的影响。 实验结果表明,在加入高斯噪 声的情况下,使用Adam优化器得出的损失函数和计算时间优于其他优化器。
Abstract:
At present,machine learning algorithms have been applied to various fields of society,such as data mining,personalized information recommendation and natural language processing,which play an important role in people’s work and life. Linear regression model(LR) is one of several common machine learning algorithms. It is simple to use,easy to understand and easy to execute,but the performance of the model will be greatly affected when noise is added. The optimization methods of LR include batch gradient descent (BGD),stochastic gradient descent(SGD),mini-batch gradient descent (MBGD) and Adam optimizer,etc. The performance of the final trained model is affected by optimization methods, learning rate,noise and many other factors. In order to study how to select the optimizer to improve the performance of the LR model with Gaussian noise,we uses Python language and TensorFlow framework to study the impact of Gaussian noise on the performance of the LR model by comparing the loss functions of several optimizers and computing time. The experiment shows that the loss function and computing time obtained by Adam optimizer is superior to other optimizers when Gaussian noise is added.

相似文献/References:

[1]陈全 赵文辉 李洁 江雨燕.选择性集成学习算法的研究[J].计算机技术与发展,2010,(02):87.
 CHEN Quan,ZHAO Wen-hui,LI Jie,et al.Research of Selective Ensemble Learning Algorithm[J].Computer Technology and Development,2010,(03):87.
[2]黄秀丽 王蔚.SVM在非平衡数据集中的应用[J].计算机技术与发展,2009,(06):190.
 HUANG Xiu-li,WANG Wei.Application of SVM in Imbalances Dataset[J].Computer Technology and Development,2009,(03):190.
[3]鲁晓南 接标.一种基于个性化邮件特征的反垃圾邮件系统[J].计算机技术与发展,2009,(08):155.
 LU Xiao-nan,JIE Biao.An Individual Anti- Spam Technology[J].Computer Technology and Development,2009,(03):155.
[4]张苗 张德贤.多类支持向量机文本分类方法[J].计算机技术与发展,2008,(03):139.
 ZHANG Miao,ZHANG De-xian.Research on Text Categorization Based on. M- SVMs[J].Computer Technology and Development,2008,(03):139.
[5]汤萍萍 王红兵.基于强化学习的Web服务组合[J].计算机技术与发展,2008,(03):142.
 TANG Ping-ping,WANG Hong-bing.Web Service Composition Based on Reinforcement -Learning[J].Computer Technology and Development,2008,(03):142.
[6]杨雪洁 赵姝 张燕平.基于商空间理论的冬小麦产量预测和分析[J].计算机技术与发展,2008,(03):249.
 YANG Xue-jie,ZHAO Shu,ZHANG Yan-ping.Analysis on Winter Wheat Yield Based on Quotient Space Theory[J].Computer Technology and Development,2008,(03):249.
[7]汤伟 程家兴 纪霞.一种基于概率推理的邮件过滤系统的研究与设计[J].计算机技术与发展,2008,(08):76.
 TANG Wei,CHENG Jia-xing,JI Xia.Research and Design of a Spam Filtering System Based on Probability Inference[J].Computer Technology and Development,2008,(03):76.
[8]孙海虹 丁华福.基于模糊粗糙集的Web文本分类[J].计算机技术与发展,2010,(07):21.
 SUN Hai-hong,DING Hua-fu.Web Document Classification Based on Fuzzy-Rough Set[J].Computer Technology and Development,2010,(03):21.
[9]汤伟 程家兴 纪霞.统计学理论在邮件分类中的应用研究[J].计算机技术与发展,2008,(12):231.
 TANG Wei,CHENG Jia-xing,JI Xia.Research and Design of a Spam Filtering System Based on Statistical Learning Theory[J].Computer Technology and Development,2008,(03):231.
[10]张高胤 谭成翔 汪海航.基于K-近邻算法的网页自动分类系统的研究及实现[J].计算机技术与发展,2007,(01):21.
 ZHANG Gao-yin,TAN Cheng-xiang,WANG Hai-hang.Design and Implementation of Web Page Automation Classification System Based on K- Nearest Neighbor Algorithm[J].Computer Technology and Development,2007,(03):21.

更新日期/Last Update: 2020-03-10