[1]孟彩霞,李楠楠,张 琰.基于复杂网络的社区发现算法研究[J].计算机技术与发展,2020,30(01):82-86.[doi:10. 3969 / j. issn. 1673-629X. 2020. 01. 015]
 MENG Cai-xia,LI Nan-nan,ZHANG Yan.Research on Community Detection Algorithm Based on Complex Network[J].Computer Technology and Development,2020,30(01):82-86.[doi:10. 3969 / j. issn. 1673-629X. 2020. 01. 015]
点击复制

基于复杂网络的社区发现算法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30
期数:
2020年01期
页码:
82-86
栏目:
智能、算法、系统工程
出版日期:
2020-01-10

文章信息/Info

Title:
Research on Community Detection Algorithm Based on Complex Network
文章编号:
1673-629X(2020)01-0082-05
作者:
孟彩霞李楠楠张 琰
西安邮电大学 计算机学院,陕西 西安 700121
Author(s):
MENG Cai-xiaLI Nan-nanZHANG Yan
School of Computer Science and Technology,Xi’an University of Posts and Telecommunications,Xi’an 700121,China
关键词:
有向加权网络标签传播ClusterRank节点重要性Jaccard节点相似度
Keywords:
directed weighted networklabel propagationClusterRanknode importanceJaccardnode similarity
分类号:
TP301.6
DOI:
10. 3969 / j. issn. 1673-629X. 2020. 01. 015
摘要:
近年来,高质量社区的挖掘和发现已经成为复杂网络研究的一个热点。 目前大多的社区发现算法主要针对无向网络,但现在的很多真实网络通常都是有向加权的。 同时,标签传播算法(LPA)是一种接近线性复杂度的社区发现算法,该算法具有简单高效、不需要提供社区规模和社区个数等先验知识的特点,因而得到了广泛关注和应用。 针对有向加权网络,提出了一种基于节点重要性和节点相似性的改进标签传播算法(CRJ-LPA)。该算法综合考虑节点的边权、节点的信息传播能力、节点相似度以及节点集聚系数等因素。算法通过加权的 ClusterRank 获得节点重要性列表用以避免 LPA中的随机选择;然后,采用 Jaccard 系数度量节点的相似度,结合节点重要性列表计算出一个新的度量 CRJ(重要度和相似度),提高了算法的稳定性。 实验结果表明,该算法有效可行,且具有较好的鲁棒性。
Abstract:
In recent years,the mining and discovery of high-quality communities has become a hot topic in complex network research.However,most community discovery algorithms are mainly directed at undirected networks,but many real networks are usually directed weighted. At the same time,the label propagation algorithm (LPA) is a community discovery algorithm close to linear complexity. It is simple and efficient,and does not need to provide prior knowledge such as community size and community umber,which has been widely concerned and applied. For the directed weighted network,a label propagation algorithm(CRJ-LPA) based on node similarity and node importance is proposed. The node importance list is obtained by weighted ClusterRank to avoid random selection in LPA. Then,the Jaccard coefficient is used to measure the similarity of the nodes. Combined with the node importance list,a new metric CRJ (importance and similarity) is calculated to improve the stability of the algorithm. Experiment shows that the proposed algorithm is feasible and effective with strong robustness.

相似文献/References:

[1]王庚,宋传超,盛玉晓,等.基于标签传播的社区挖掘算法研究综述[J].计算机技术与发展,2013,(12):69.
 WANG Geng,SONG Chuan-chao,SHENG Yu-xiao,et al.Research Summary on Communities Mining Algorithm Based on Label Propagation[J].Computer Technology and Development,2013,(01):69.
[2]张 猛,李玲娟.稳定的标签传播社团划分算法研究[J].计算机技术与发展,2020,30(01):129.[doi:10. 3969 / j. issn. 1673-629X. 2020. 01. 023]
 ZHANG Meng,LI Ling-juan.Research on Stable Label Propagation Community Division Algorithm[J].Computer Technology and Development,2020,30(01):129.[doi:10. 3969 / j. issn. 1673-629X. 2020. 01. 023]

更新日期/Last Update: 2020-01-10