[1]陆圣宇,史 军,刘 宝,等.基于转移自洽和偏好连接的链路预测算法研究[J].计算机技术与发展,2019,29(08):18-23.[doi:10. 3969 / j. issn. 1673-629X. 2019. 08. 004]
 LU Sheng-yu,SHI Jun,LIU Bao,et al.Research on a Link Prediction Algorithm Based on Transferring Similarity and Preferential Attachment[J].,2019,29(08):18-23.[doi:10. 3969 / j. issn. 1673-629X. 2019. 08. 004]
点击复制

基于转移自洽和偏好连接的链路预测算法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
29
期数:
2019年08期
页码:
18-23
栏目:
智能、算法、系统工程
出版日期:
2019-08-10

文章信息/Info

Title:
Research on a Link Prediction Algorithm Based on Transferring Similarity and Preferential Attachment
文章编号:
1673-629X(2019)08-0018-06
作者:
陆圣宇史 军刘 宝姚金魁金 毅
江南计算技术研究所,江苏 无锡 214083
Author(s):
LU Sheng-yuSHI JunLIU BaoYAO Jin-kuiJIN Yi
Jiangnan Institute of Computing Technology,Wuxi 214083,China
关键词:
复杂网络链路预测偏好连接相似性转移自洽相似性
Keywords:
omplex networklink predictionpreferential attachment similaritytransferring similarity
分类号:
TP301.6
DOI:
10. 3969 / j. issn. 1673-629X. 2019. 08. 004
摘要:
在大规模复杂网络中,基于网络结构相似性的链路预测方法是目前综合考虑计算复杂度低和准确性较优的预测模式。 但在稀疏、低聚簇的复杂网络中,仅依靠共同邻居和节点度信息进行链路预测难以取得较为理想的预测结果。 文中主要研究归纳了复杂网络中基于结构相似性的链路预测方法,并在比较现有的相似性链路预测算法特性的基础上,提出了一种基于偏好连接相似性和转移自洽相似性的 TSPA 相似性指标的链路预测算法。 该算法从新连边概率正比于节点度和节点间相似性可传递的角度出发,构造全新的相似性指标。将该算法与其他相似性算法在经典复杂网络数据集上进行比较,实验结果表明,基于该相似性指标的算法在经典复杂网络数据集中取得了较好的预测性能。
Abstract:
In large - scale complex networks, the link prediction algorithm based on network structure similarity is a better mode considering computation complexity and accuracy. But in sparse and oligomeric complex networks,link prediction can hardly get ideal result through common neighbors and node degree. In this paper,the link prediction methods based on structural similarity in complex networks are mainly studied and concluded. On the basis of comparing the characteristics of existing similar link prediction algorithms,a link prediction algorithm based on TSPA similarity index based on transferring similarity and preferential attachment is proposed. This algorithm constructs a new similarity index based on the new connection probability proportional to the degree of nodes and the similarity transfer between nodes. The algorithm is compared with other similarity algorithms on the data sets of classical complex networks. The experiment shows that the proposed algorithm based on the similarity index achieves better prediction performance in the data sets of classical complex networks.

相似文献/References:

[1]李方洁 刘希玉.复杂网络维的测量[J].计算机技术与发展,2010,(04):61.
 LI Fang-jie,LIU Xi-yu.Measuring Dimensions for Complex Networks[J].,2010,(08):61.
[2]李晶晶 王红.用复杂网络理论分析电网及大停电事故[J].计算机技术与发展,2008,(10):247.
 LI Jing-jing,WANG Hong.Analysis on Power Grids and Blackouts with Complex Network Theory[J].,2008,(08):247.
[3]惠伟 王红.复杂网络在城市公交网络中的实证分析[J].计算机技术与发展,2008,(11):217.
 HUI Wei,WANG Hong.Empirical Analysis of Complex Networks in Public Traffic Networks[J].,2008,(08):217.
[4]赵鹏 蔡庆生 王清毅.一种用于文章推荐系统中的用户模型表示方法[J].计算机技术与发展,2007,(01):4.
 ZHAO Peng,CAI Qing-sheng,WANG Qing-yi.A Novel Representation of User Profile in Document Recommendation System[J].,2007,(08):4.
[5]赵鹏 耿焕同 蔡庆生 王清毅.一种基于加权复杂网络特征的K—means聚类算法[J].计算机技术与发展,2007,(09):35.
 ZHAO Peng,GENG Huan-tong,CAI Qing-sheng,et al.A Novel K- means Clustering Algorithm Based on Weighted Complex Networks Feature[J].,2007,(08):35.
[6]顾亦然 谢鸿飞 李金发.移动通信网络中人类行为动力学的研究[J].计算机技术与发展,2010,(09):57.
 GU Yi-ran,XIE Hong-fei,LI Jin-fa.Studies Based on Complex Network and Dynamics of Human Behavior in MC Network[J].,2010,(08):57.
[7]顾亦然 李金发 谢鸿飞.阵发特性影响因素的研究[J].计算机技术与发展,2010,(09):168.
 GU Yi-ran,LI Jin-fa,XIE Hong-fei.Study on Influence Factors of Characteristic of Burst[J].,2010,(08):168.
[8]何明东 熊建斌 李振坤.基于复杂网络的软件开发方法研究[J].计算机技术与发展,2011,(06):59.
 HE Ming-dong,XIONG Jian-bin,LI Zhen-kun.Complex Network-Based Software Development Method Research[J].,2011,(08):59.
[9]王泽洪 闵妍妮 刘名扬 谭韵天.Pub/Sub系统中基于免疫的新型路由算法[J].计算机技术与发展,2012,(02):6.
 WANG Ze-hong,MIN Yan-ni,LIU Ming-yang,et al.A New Immunity-Based Routing Strategy in Pub/Sub System[J].,2012,(08):6.
[10]马兴福 王红 李园园.基于复杂网络的中小企业板股市网络特性分析[J].计算机技术与发展,2012,(04):172.
 MA Xing-fu,WANG Hong,LI Yuan-yuan.Characteristic Analysis of Small and Medium Enterprises Board Stock Market Network Based on Complex Network[J].,2012,(08):172.
[11]李旗旗,徐 敏.链路预测方法与网络结构的相关性[J].计算机技术与发展,2017,27(12):57.[doi:10.3969/ j. issn.1673-629X.2017.12.013]
 LI Qi-qi,XU Min.Correlation between Link Prediction Method and Network Structure[J].,2017,27(08):57.[doi:10.3969/ j. issn.1673-629X.2017.12.013]
[12]陈广福,江 玲,韩辉珍.基于节点度异质性惩罚的链路预测方法[J].计算机技术与发展,2022,32(12):81.[doi:10. 3969 / j. issn. 1673-629X. 2022. 12. 013]
 CHEN Guang-fu,JIANG Ling,HAN Hui-zhen.Link Prediction Method Based on Node Degree Heterogeneity Penalization[J].,2022,32(08):81.[doi:10. 3969 / j. issn. 1673-629X. 2022. 12. 013]

更新日期/Last Update: 2019-08-10