[1]王晓耘,李 贤,袁 媛.基于因子分解机和隐马尔可夫的推荐算法[J].计算机技术与发展,2019,29(06):85-89.[doi:10. 3969 / j. issn. 1673-629X. 2019. 06. 018]
 WANG Xiao-yun,LI Xian,YUAN Yuan.A Recommendation Algorithm Based on Factorization Machines and Hidden Markov[J].,2019,29(06):85-89.[doi:10. 3969 / j. issn. 1673-629X. 2019. 06. 018]
点击复制

基于因子分解机和隐马尔可夫的推荐算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
29
期数:
2019年06期
页码:
85-89
栏目:
智能、算法、系统工程
出版日期:
2019-06-10

文章信息/Info

Title:
A Recommendation Algorithm Based on Factorization Machines and Hidden Markov
文章编号:
1673-629X(2019)06-0085-05
作者:
王晓耘1 李 贤2 袁 媛1
1. 杭州电子科技大学 管理学院,浙江 杭州 310018; 2. 杭州电子科技大学 计算机学院
Author(s):
WANG Xiao-yun1 LI Xian2 YUAN Yuan1
1. School of Management,Hangzhou Dianzi University,Hangzhou 310018,China;2. School of Computer Science and Technology,Hangzhou Dianzi University
关键词:
上下文感知因子分解机隐马尔可夫模型隐藏状态
Keywords:
context-awarefactorization machineshidden Markov modelhidden state
分类号:
TP391.3
DOI:
10. 3969 / j. issn. 1673-629X. 2019. 06. 018
摘要:
因子分解机是一种基于矩阵分解的机器学习方法,通过在矩阵中引入上下文信息,构建含有上下文信息的矩阵,能够很好地进行用户评分预测。 隐马尔可夫模型是一种含有隐含未知参数的统计模型,使用隐藏状态能够更好地符合实际情况。 传统的推荐算法在进行推荐时通常并没有引入上下文信息,这通常会影响推荐算法的效果。 鉴于上下文感知推荐算法通常能有效提高推荐精度,文中通过对推荐系统引入上下文信息并为用户添加用户隐藏兴趣状态,能够更精确地对用户进行推荐。 为此,提出了一种结合因子分解机和隐马尔可夫模型的方法。 在公开数据集上的验证结果表明,该方法相较于一些传统的推荐算法能够有效地提升推荐精度,并且在数据量增加的情况下也有较高的推荐精度。
Abstract:
Factorization machine is a machine learning method based on matrix decomposition. By introducing context information into the matrix and constructing the matrix containing context information,it can predict the user rating well. Hidden Markov model is a statistical model with hidden parameters implied,using a hidden state can better meet the actual situation. Traditional recommendation algorithms usually do not introduce context information when making recommendations, which usually affects the effect of recommendation. In view of the fact that the context-aware recommender algorithm can effectively improve the precision,the users can be recommended more accurately by introducing context information into the recommendation system and adding users爷 hidden interest state. Therefore,we present a method of binding factorization machines and hidden Markov models. The verification results on the public data set show that the proposed method can effectively improve the recommendation accuracy compared with some traditional recommendation algorithms,and it also has higher recommendation accuracy when the amount of data increases.

相似文献/References:

[1]刘威 王汝传 叶宁 马守明.基于本体的上下文感知中间件框架[J].计算机技术与发展,2010,(05):51.
 LIU Wei,WANG Ru-chuan,YE Ning,et al.Context-aware Middleware Framework Based on Ontology[J].,2010,(06):51.
[2]余雪勇,唐城,朱晓荣.泛在网下基于上下文感知的虚拟终端技术研究[J].计算机技术与发展,2013,(06):245.
 YU Xue-yong,TANG Cheng,ZHU Xiao-rong.Research on Virtual Terminal Technology Based on Context-aware in Ubiquitous Network[J].,2013,(06):245.
[3]王华,李长云,魏秋彦,等. 运行时基于模型的软件动态演化良性建模方法[J].计算机技术与发展,2015,25(05):74.
 WANG Hua,LI Chang-yun,WEI Qiu-yan,et al. A Benign Modeling Method of Software Dynamic Evolution Based on Model in Run Time[J].,2015,25(06):74.

更新日期/Last Update: 2019-06-10