相似文献/References:
[1]何中胜 庄燕滨.基于Apriori&Fp—growth的频繁项集发现算法[J].计算机技术与发展,2008,(07):45.
HE Zhong-sheng,ZHUANG Yan-bin.Algorithm of Mining Frequent Itemset Based on Apriori and Fp - growth[J].,2008,(11):45.
[2]李志云 周国祥.一种基于MFP树的快速关联规则挖掘算法[J].计算机技术与发展,2007,(06):94.
LI Zhi-yun,ZHOU Guo-xiang.A Fast Association Rule Mining Algorithm Based on MFP Tree[J].,2007,(11):94.
[3]楼巍 刘捷 严利民.协同进化算法在关联规则挖掘中的应用[J].计算机技术与发展,2012,(11):13.
LOU Wei,LIU Jie,YAN Li-min.Applied Research on Association Rules Mining with Co-evolution Algorithm[J].,2012,(11):13.
[4]田兴邦,华蓓,吕颖,等. 基于动态冲突度计算的敏感规则清洗算法[J].计算机技术与发展,2015,25(02):126.
TIAN Xing-bang,HUA Bei,Lü Ying,et al. Sensitive-rule Sanitization Algorithm Based on Computing Dynamic Conflict Degree[J].,2015,25(11):126.
[5]赵阳,吴廖丹. 一种自底向上的最大频繁项集挖掘方法[J].计算机技术与发展,2017,27(08):57.
ZHAO Yang,WU Liao-dan. A Bottom-up Method for Mining Maximum Frequent Itemsets[J].,2017,27(11):57.
[6]赵阳,白凡. 基于FP-tree的支持度计数优化策略[J].计算机技术与发展,2017,27(10):30.
ZHAO Yang,BAI Fan. Support Count Optimization Method Based on FP-tree[J].,2017,27(11):30.
[7]闫 坤,沈苏彬.一种基于智能家居的用户行为预测方法[J].计算机技术与发展,2020,30(01):19.[doi:10. 3969 / j. issn. 1673-629X. 2020. 01. 004]
YAN Kun,SHEN Su-bin.A User Behavior Prediction Method Based on Smart Home[J].,2020,30(11):19.[doi:10. 3969 / j. issn. 1673-629X. 2020. 01. 004]