[1]赵胜,赵学健,张欣慧,等.基于Sobel 算子和 CNN 的车辆轨迹识别系统[J].计算机技术与发展,2018,28(07):169-172.[doi:10.3969/ j. issn.1673-629X.2018.07.036]
 ZHAO Sheng,ZHAO Xue-jian,ZHANG Xin-hui,et al.Vehicle Trajectory Recognition System Based on Sobel Operator and CNN[J].,2018,28(07):169-172.[doi:10.3969/ j. issn.1673-629X.2018.07.036]
点击复制

基于Sobel 算子和 CNN 的车辆轨迹识别系统()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
28
期数:
2018年07期
页码:
169-172
栏目:
应用开发研究
出版日期:
2018-07-10

文章信息/Info

Title:
Vehicle Trajectory Recognition System Based on Sobel Operator and CNN
文章编号:
1673-629X(2018)07-0169-04
作者:
赵胜1 赵学健2 张欣慧1 孙知信2 陈勇3
1. 南京邮电大学 物联网学院,江苏 南京 210003;
2. 南京邮电大学 宽带无线通信与传感网技术教育部重点实验室,江苏 南京 210003;
3. 南京龙渊微电子科技有限公司,江苏 南京 210000
Author(s):
ZHAO Sheng1 ZHAO Xue-jian2 ZHANG Xin-hui1 SUN Zhi-xin 2 CHEN Yong3
1. Internet of Things,Nanjing University of Posts and Telecommunications,Nanjing 210003,China;
2. Key Laboratory of Broadband Wireless Communication and Sensor Network Technology of Ministry of Education,Nanjing University of Posts and Telecommunications,Nanjing 210003,China;
3. Nanjing Longyuan Microelectronics Technology Co. ,Ltd. ,Nanjing 210000,China
关键词:
CNN轨迹跟踪Sobel 算子HSV 模型
Keywords:
CNNtrajectory trackingSobel operatorHSV model
分类号:
TP302
DOI:
10.3969/ j. issn.1673-629X.2018.07.036
文献标志码:
A
摘要:
随着机动车保有量的飞速增长,由此带来的交通安全问题以及如何有效地监控交通运输车辆和分析车辆轨迹行为成为当前社会关注的热点之一。对目前现有的车辆轨迹识别技术进行了改进。车辆的轨迹识别主要包括车辆目标识别和连续视频帧中车辆位置的定位两个部分。 采用 HSV 颜色模型和 Sobel 算子相结合的技术来快速提取车辆目标的候选区域信息,将该信息输入到训练好的 CNN 模型中以完成车辆目标信息的提取。然后根据前后帧的关联性提取每帧视频中车辆的位置,通过以上步骤可以计算得到车辆一系列连续轨迹点,进而分析车辆在行驶过程中的状态。 实验结果表明,该系统不仅能够准确地识别出视频中车辆目标,而且在连续视频帧中能够有效地对车辆轨迹进行跟踪识别。
Abstract:
With the increasing of motor vehicles rapidly,the resulting traffic safety and how to effectively monitor the traffic vehicles and analyze the vehicle trajectory behavior become one of the social hot spots. For this,we have improved the existing technologies about the trajectory recognition of vehicle which mainly includes two parts:the identification of vehicle targets and the position of the vehicle between the continuous video frames. Using the HSV color model and the Sobel operator can quickly extract the candidate region’s information of the vehicle target and the information is input to the trained CNN model for extraction of the information of vehicle target. And then according to the correlation between the front and rear frames,the position of the vehicle in each frame can be extracted. Through the above steps we can calculate a series of continuous track points of the vehicle,and then we can analyze the state of the vehicle on the road. The experiment shows that the system can not only identify the vehicle target in the video,but also can track the vehicle trajectory in the continuous frames.

相似文献/References:

[1]高 强,潘 俊,洪锐锋.基于 CNN 的机场安检危险品自动识别研究[J].计算机技术与发展,2019,29(10):95.[doi:10. 3969 / j. issn. 1673-629X. 2019. 10. 020]
 GAO Qiang,PAN Jun,HONG Rui-feng.Research on Automatic Recognition of Dangerous Goods in Airport Security Inspection Based on CNN[J].,2019,29(07):95.[doi:10. 3969 / j. issn. 1673-629X. 2019. 10. 020]
[2]任飞凯,邱晓晖.基于 LBP 和数据扩充的 CNN 人脸识别研究[J].计算机技术与发展,2020,30(03):62.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 012]
 REN Fei-kai,QIU Xiao-hui.Research on Face Recognition of CNN Based on LBP and Data Expansion[J].,2020,30(07):62.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 012]
[3]白成盼,惠 飞,景首才.基于微分平坦与 MPC 的智能车换道控制算法[J].计算机技术与发展,2020,30(05):16.[doi:10. 3969 / j. issn. 1673-629X. 2020. 05. 004]
 BAI Cheng-pan,HUI Fei,JING Shou-cai.Intelligent Car Lane Change Control Algorithm Based on Differential Flatness and MPC[J].,2020,30(07):16.[doi:10. 3969 / j. issn. 1673-629X. 2020. 05. 004]
[4]王新美,丁爱玲,雷梦宁,等.基于 CNN 和 SVM 融合的交通标志识别[J].计算机技术与发展,2020,30(06):7.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 002]
 WANG Xin-mei,DING Ai-ling,LEI Meng-ning,et al.Traffic Sign Recognition Based on Combination of CNN and SVM[J].,2020,30(07):7.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 002]
[5]何烨辛,谷 林,孙 晨.基于CNN的程序编译错误信息特征提取[J].计算机技术与发展,2021,31(05):204.[doi:10. 3969 / j. issn. 1673-629X. 2021. 05. 035]
 ,CNN-basedProgram CompilationErrorMessageFeatureExtractio[J].,2021,31(07):204.[doi:10. 3969 / j. issn. 1673-629X. 2021. 05. 035]
[6]苏魁麟,张 凯,吕学强,等.基于融合模型的名词隐喻识别[J].计算机技术与发展,2022,32(06):192.[doi:10. 3969 / j. issn. 1673-629X. 2022. 06. 032]
 SU Kui-lin,ZHANG Kai,LYU Xue-qiang,et al.Noun Metaphor Recognition Based on Fusion Model[J].,2022,32(07):192.[doi:10. 3969 / j. issn. 1673-629X. 2022. 06. 032]

更新日期/Last Update: 2018-09-05