[1]郑顾平,闫勃勃,李刚.基于机器学习的多车牌识别算法应用研究[J].计算机技术与发展,2018,28(06):129-132.[doi:10.3969/ j. issn.1673-629X.2018.06.029]
 ZHENG Gu-ping,YAN Bo-bo,LI Gang.Research on Application of Multiple License Plate Recognition Algorithm Based on Machine Learning[J].,2018,28(06):129-132.[doi:10.3969/ j. issn.1673-629X.2018.06.029]
点击复制

基于机器学习的多车牌识别算法应用研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
28
期数:
2018年06期
页码:
129-132
栏目:
应用开发研究
出版日期:
2018-06-10

文章信息/Info

Title:
Research on Application of Multiple License Plate Recognition Algorithm Based on Machine Learning
文章编号:
1673-629X(2018)06-0129-04
作者:
郑顾平闫勃勃李刚
华北电力大学 控制与计算机工程学院,河北 保定 071000
Author(s):
ZHENG Gu-pingYAN Bo-boLI Gang
School of Control and Computer Engineering,North China Electric Power University,Baoding 071000,China
关键词:
机器学习车牌识别支持向量机多层感知机
Keywords:
machine learninglicense plate recognitionsupport vector machinemultilayer perceptron
分类号:
TP301.6
DOI:
10.3969/ j. issn.1673-629X.2018.06.029
文献标志码:
A
摘要:
为满足车牌识别系统中对多车牌识别的高准确率的应用需求,提出一种基于优化参数的 SVM(支持向量机)进行车牌定位。 考虑到雾霾天气下拍摄的图片对车牌识别的影响,先进行去雾处理,然后使用 Sobel 算子对图片进行垂直边缘检测,结合形态学处理确定候选车牌轮廓,对候选车牌轮廓通过外接矩阵的长宽比初步判断符合车牌的区域。 加上国内车牌的颜色单一,结合 HSV 颜色模型定位,很大程度上提高了车牌的定位率。 对定位出的候选车牌区域进行训练和 SVM模型判断,确定出符合车牌的区域。 同时对车牌进行字符分割后,使用单独为车牌汉字训练的 ANN 模型进行字符识别。此外针对不同的场景提供训练模式,系统可以训练特定场景下的 SVM 模型。 经验证,该系统能够满足多车牌识别的实际应用,鲁棒性和准确率相比通用模型提高近 20%。
Abstract:
In order to meet the requirements about high accuracy of multi-license plate recognition for license plate recognition system,we propose a SVM (support vector machine) based on optimization parameters to locate the license plate. Taking into account the impact of the images taken in hazy weather on the license plate recognition,the first thing is to remove the image haze. Then,the Sobel operator is used for vertical edge detection. According to the morphological processing,the candidate license plate contour is determined and the area of license plate is judged initially by the length and width of the external matrix to the candidate license plate contour. In addition,the color of the domestic license plate is single,so the localization rate of the license plate is improved to a great extent by combining the localization of HSV color model. The SVM model is trained to judge the candidate license plate and determine the area which conforms to the license plate. At the same time,after the character segmentation of the license plate,the character recognition is carried out by using the ANN model which is trained by the Chinese characters for the license plate. In addition,the system can train the SVM model in a specific scenario in order to provide a training pattern for different scenarios. It is verified that this system can meet the practical application of multi-license plate recognition and its robustness and accuracy increases nearly 20 percent compared to the general model.

相似文献/References:

[1]陈全 赵文辉 李洁 江雨燕.选择性集成学习算法的研究[J].计算机技术与发展,2010,(02):87.
 CHEN Quan,ZHAO Wen-hui,LI Jie,et al.Research of Selective Ensemble Learning Algorithm[J].,2010,(06):87.
[2]邹星.一种基于模板库的车牌字符识别算法[J].计算机技术与发展,2010,(04):128.
 ZOU Xing.A License Plate Character Recognition Arithmetic Based on Template Library[J].,2010,(06):128.
[3]黄秀丽 王蔚.SVM在非平衡数据集中的应用[J].计算机技术与发展,2009,(06):190.
 HUANG Xiu-li,WANG Wei.Application of SVM in Imbalances Dataset[J].,2009,(06):190.
[4]鲁晓南 接标.一种基于个性化邮件特征的反垃圾邮件系统[J].计算机技术与发展,2009,(08):155.
 LU Xiao-nan,JIE Biao.An Individual Anti- Spam Technology[J].,2009,(06):155.
[5]张苗 张德贤.多类支持向量机文本分类方法[J].计算机技术与发展,2008,(03):139.
 ZHANG Miao,ZHANG De-xian.Research on Text Categorization Based on. M- SVMs[J].,2008,(06):139.
[6]汤萍萍 王红兵.基于强化学习的Web服务组合[J].计算机技术与发展,2008,(03):142.
 TANG Ping-ping,WANG Hong-bing.Web Service Composition Based on Reinforcement -Learning[J].,2008,(06):142.
[7]杨雪洁 赵姝 张燕平.基于商空间理论的冬小麦产量预测和分析[J].计算机技术与发展,2008,(03):249.
 YANG Xue-jie,ZHAO Shu,ZHANG Yan-ping.Analysis on Winter Wheat Yield Based on Quotient Space Theory[J].,2008,(06):249.
[8]杨述斌 张阳.复杂车辆图像中的车牌快速形态定位算法[J].计算机技术与发展,2008,(06):50.
 YANG Shu-bin,ZHANG Yang.Fast Morphological Locating Algorithm of Vehicle License Plate in Complex Vehicle Images[J].,2008,(06):50.
[9]汤伟 程家兴 纪霞.一种基于概率推理的邮件过滤系统的研究与设计[J].计算机技术与发展,2008,(08):76.
 TANG Wei,CHENG Jia-xing,JI Xia.Research and Design of a Spam Filtering System Based on Probability Inference[J].,2008,(06):76.
[10]孙海虹 丁华福.基于模糊粗糙集的Web文本分类[J].计算机技术与发展,2010,(07):21.
 SUN Hai-hong,DING Hua-fu.Web Document Classification Based on Fuzzy-Rough Set[J].,2010,(06):21.
[11]吴聪,殷浩,黄中勇,等. 基于人工神经网络的车牌识别[J].计算机技术与发展,2016,26(12):160.
 WU Cong,YIN Hao,HUANG Zhong-yong,et al. Vehicle Plate Recognition Based on Artificial Neural Network[J].,2016,26(06):160.
[12]陈 政,李良荣*,李 震,等.基于机器学习的车牌识别技术研究[J].计算机技术与发展,2020,30(06):13.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 003]
 CHEN Zheng,LI Liang-rong*,LI Zhen,et al.Research on License Plate Recognition Technology Based on Machine Learning[J].,2020,30(06):13.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 003]

更新日期/Last Update: 2018-08-22