[1]刘少林,朱文球,孙文静,等.基于联合直方图的自适应粒子滤波跟踪算法[J].计算机技术与发展,2018,28(06):106-109.[doi:10.3969/ j. issn.1673-629X.2018.06.024]
 LIU Shao-lin,ZHU Wen-qiu,SUN Wen-jing,et al.An Adaptive Particle Filtering and Tracking Algorithm Based on Joint Histogram[J].,2018,28(06):106-109.[doi:10.3969/ j. issn.1673-629X.2018.06.024]
点击复制

基于联合直方图的自适应粒子滤波跟踪算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
28
期数:
2018年06期
页码:
106-109
栏目:
智能、算法、系统工程
出版日期:
2018-06-10

文章信息/Info

Title:
An Adaptive Particle Filtering and Tracking Algorithm Based on Joint Histogram
文章编号:
1673-629X(2018)06-0106-04
作者:
刘少林1  2 朱文球1  2 孙文静1  2 王业祥1  2
1. 湖南工业大学 计算机学院,湖南 株洲 412007;
2. 智能信息感知及处理技术湖南省重点实验室,湖南 株洲 412007
Author(s):
LIU Shao-lin 1  2 ZHU Wen-qiu 1  2 SUN Wen-jing 1  2 WANG Ye-xiang 1  2
1. School of Computer,Hunan University of Technology,Zhuzhou 412007,China;
2. Key Laboratory of Intelligent Information Perception and Processing Technology,Zhuzhou 412007,China
关键词:
目标跟踪粒子滤波颜色特征纹理特征
Keywords:
tracking targetparticle filtercolor histogramtexture histogram
分类号:
TP301.6
DOI:
10.3969/ j. issn.1673-629X.2018.06.024
文献标志码:
A
摘要:
针对传统的粒子滤波跟踪算法在跟踪过程中由于目标形态不断变化以及目标被部分遮挡导致跟踪效果不理想的问题,提出了一种基于颜色纹理联合直方图特征融合的自适应粒子滤波算法。 该算法从视觉特征集中选取全局特征(颜色直方图)与局部特征(LBP 纹理直方图),组成目标颜色纹理联合直方图;将当前目标的联合直方图与初始目标的联合直方图的巴氏距离,作为粒子更新权重的依据,从而算法可以自适应地选取一组最优粒子集,并且以较少的粒子数目来保持算法的多样性,解决了传统粒子滤波算法中存在的粒子退化以及重采样过程中的粒子匮乏问题。 实验结果表明,与传统的粒子滤波算法相比,该算法可以更鲁棒地跟踪部分遮挡和形态剧烈变化的运动目标。
Abstract:
In order to solve the problem that traditional particle filter algorithm tracking the target is not ideal due to its appearance changing and partial occlusion,we propose an adaptive particle filtering algorithm based on joint histogram of color and texture. This algorithm selects the global feature (color histogram) and local feature (LBP texture) to combine color and LBP texture histogram. By calculating the Bhattacharyya distance of the current target combined histogram and the initial target combined histogram as the basis of particle update weight,it can not only select an optimal set of particles but also keep its diversity with a smaller number of particles then,which solves the problem of particle degradation and the shortage of particles in re-sampling process in the traditional particle filter algorithm.Experiment shows that compared with the traditional particle filter algorithm,the proposed algorithm can robustly track the moving target with changes of the appearance or partly occluded.

相似文献/References:

[1]卢笑 孟正大.陪护机器人粒子滤波定位法中重采样算法研究[J].计算机技术与发展,2010,(04):54.
 LU Xiao,MENG Zheng-da.Research of Particle Filter Resampling Algorithm in Indoor Service Robot Localization[J].,2010,(06):54.
[2]刘翔 吴谨 祝愿博 康晓晶.基于视频序列的目标检测与跟踪技术研究[J].计算机技术与发展,2009,(11):179.
 LIU Xiang,WU Jin,ZHU Yuan-bo,et al.A Study of Object Detecting and Tracking Based on Video Sequences[J].,2009,(06):179.
[3]雷云 王夏黎 孙华.基于视频的交通目标跟踪方法研究[J].计算机技术与发展,2010,(07):44.
 LEI Yun,WANG Xia-li,SUN Hua.The Research about Transport Target Tracking Based on Video[J].,2010,(06):44.
[4]谢之宇 蒋晓瑜 汪熙 裴闯.基于多线索融合的目标跟踪算法研究[J].计算机技术与发展,2011,(03):125.
 XIE Zhi-yu,JIANG Xiao-yu,WANG Xi,et al.A Target Tracking Algorithm Research Based on Multi-Cue Fusion[J].,2011,(06):125.
[5]尤天来 周海徽[].红外目标跟踪技术研究[J].计算机技术与发展,2011,(10):140.
 YOU Tian-lai,ZHOU Hai-hui.Research of Infrared Target Tracking Technology[J].,2011,(06):140.
[6]龙凤 薛冬林 陈桂明 杨庆.基于粒子滤波与线性自回归的故障预测算法[J].计算机技术与发展,2011,(11):133.
 LONG Feng,XUE Dong-lin,CHEN Gui-ming,et al.Fault Prediction Algorithm Based on Particle Filter and Linear Autoregressive Models[J].,2011,(06):133.
[7]赵侃 漆德宁.基于UKF滤波的FDOA和TDOA联合定位跟踪算法[J].计算机技术与发展,2012,(05):127.
 ZHAO Kan,QI De-ning.A Tracking TDOA/FDOA Joint Location Algorithm Based on UKF[J].,2012,(06):127.
[8]姚放吾 许辰铭.基于目标质心的Meanshift跟踪算法[J].计算机技术与发展,2012,(06):104.
 YAO Fang-wu,XU Chen-ming.A Meanshift Tracking Algorithm Based on Centroid[J].,2012,(06):104.
[9]陈延利 施永豪.运动目标检测与跟踪的DSP实现[J].计算机技术与发展,2012,(08):82.
 CHEN Yan-li,SHI Yong-hao.DSP Realization of Detection and Tracking for Moving Objects[J].,2012,(06):82.
[10]张璐,张国良,张维平,等.改进IMM算法在机器人目标跟踪中的应用[J].计算机技术与发展,2013,(02):149.
 ZHANG Lu,ZHANG Guo-liang,ZHANG Wei-ping,et al.Application of Improved IMM Algorithm in Robot Target Tracking[J].,2013,(06):149.
[11]雷飞,孟晓琼,吕露,等. 基于改进的均值漂移算法的运动汽车跟踪[J].计算机技术与发展,2017,27(02):106.
 LEI Fei,MENG Xiao-qiong,LYU Lu,et al. Moving Vehicle Tracking Based on Improved Mean Shift[J].,2017,27(06):106.
[12]闾斯瑶,周武能,李龙龙.基于 SAGBA 优化粒子滤波的目标跟踪[J].计算机技术与发展,2020,30(03):36.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 007]
 LYU Si-yao,ZHOU Wu-neng,LI Long-long.Target Tracking Based on SAGBA Optimized Particle Filter[J].,2020,30(06):36.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 007]
[13]李 敏,吴 莎.基于深度学习的粒子滤波视频目标跟踪算法[J].计算机技术与发展,2020,30(06):23.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 005]
 LI Min,WU Sha.Particle Filter Video Target Tracking Algorithm Based on Deep Learning[J].,2020,30(06):23.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 005]
[14]马媛媛,杨小军.基于多层深度特征的尺度相关粒子滤波算法[J].计算机技术与发展,2021,31(06):169.[doi:10. 3969 / j. issn. 1673-629X. 2021. 06. 030]
 MA Yuan-yuan,YANG Xiao-jun.A Scale Dependent Particle Filter Algorithm Based onMulti-layer Depth Characteristics[J].,2021,31(06):169.[doi:10. 3969 / j. issn. 1673-629X. 2021. 06. 030]

更新日期/Last Update: 2018-08-16