[1]夏达,李士进.水质时间序列模式挖掘[J].计算机技术与发展,2018,28(05):149-153.[doi:10.3969/j.issn.1673-629X.2018.05.034]
 XIA Da,LI Shijin.Pattern Mining for Water Quality Time Series[J].,2018,28(05):149-153.[doi:10.3969/j.issn.1673-629X.2018.05.034]
点击复制

水质时间序列模式挖掘()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
28
期数:
2018年05期
页码:
149-153
栏目:
应用开发研究
出版日期:
2018-05-10

文章信息/Info

Title:
Pattern Mining for Water Quality Time Series
文章编号:
1673-629X(2018)05-0149-05
作者:
夏达李士进
河海大学 计算机与信息学院,江苏 南京 210098
Author(s):
XIA DaLI Shi-jin
School of Computer and Information,Hohai University,Nanjing 210098,China
关键词:
数据挖掘序列模式挖掘间隔约束One-Off 条件
Keywords:
data miningsequential pattern mininggap constraintsOne-Off condition
分类号:
TP311
DOI:
10.3969/j.issn.1673-629X.2018.05.034
文献标志码:
A
摘要:
对水质时间序列进行数据挖掘,找出其蕴含的模式,对于水资源的改善有重要的现实意义。针对带间隔约束的有序时间序列的模式挖掘,现有算法多按左优先匹配以完备性为代价加快效率或枚举可能位置损失效率提高完备性。为了提高模式挖掘的效率同时保证一定的完备性,提出一种满足 One-Off 条件的带有间隔约束的单序列模式挖掘算法 FOFM(fast one-offing mining)。算法首先扫描序列获得长度为 1 的模式,再通过将当前长度的所有频繁模式进行两两比较,而后连接可连接的模式以形成新的模式,在模式连接的过程中记录候选模式最后事件的可能位置并通过回溯位置序列的方法检查模式的支持度,直至无法生成新的模式。实验结果表明,FOFM 算法在水质时间序列上相较于相关序列模式挖掘算法拥有较高的效率和一定的完备性。
Abstract:
It’s important to mine water quality time series and find out its pattern in series for the improvement of water resources.For the mining of time series with interval constraints,most of existing algorithms reduce the completeness by left-first matching for the efficiency or reduce the efficiency by enumerating the possible position for the completeness.In order to improve the efficiency of pattern mining and maintain a high degree of completeness,we propose a fast one-offing mining algorithm with One-off condition and gap constraints.
It first scans the sequence to obtain the pattern of length 1,and then obtains the candidate pattern through comparison on all frequent patterns of the current length after connection of the pattern.The possible position of the last event of the candidate pattern during the pattern connection is recorded and the support of the pattern by the backtracking sequence is checked,until a new pattern can’t be generated.The experiment based on the water quality time series proves that the FOFM is more effective than the related sequential pattern mining algorithm with a certain completeness.

相似文献/References:

[1]项响琴 汪彩梅.基于聚类高维空间算法的离群数据挖掘技术研究[J].计算机技术与发展,2010,(01):120.
 XIANG Xiang-qin,WANG Cai-mei.Study of Outlier Data Mining Based on CLIQUE Algorithm[J].,2010,(05):120.
[2]李雷 丁亚丽 罗红旗.基于规则约束制导的入侵检测研究[J].计算机技术与发展,2010,(03):143.
 LI Lei,DING Ya-li,LUO Hong-qi.Intrusion Detection Technology Research Based on Homing - Constraint Rule[J].,2010,(05):143.
[3]吉同路 柏永飞 王立松.住宅与房地产电子政务中数据挖掘的应用研究[J].计算机技术与发展,2010,(01):235.
 JI Tong-lu,BAI Yong-fei,WANG Li-song.Study and Application of Data Mining in E-government of House and Real Estate Industry[J].,2010,(05):235.
[4]杨静 张楠男 李建 刘延明 梁美红.决策树算法的研究与应用[J].计算机技术与发展,2010,(02):114.
 YANG Jing,ZHANG Nan-nan,LI Jian,et al.Research and Application of Decision Tree Algorithm[J].,2010,(05):114.
[5]赵裕啸 倪志伟 王园园 伍章俊.SQL Server 2005数据挖掘技术在证券客户忠诚度的应用[J].计算机技术与发展,2010,(02):229.
 ZHAO Yu-xiao,NI Zhi-wei,WANG Yuan-yuan,et al.Application of Data Mining Technology of SQL Server 2005 in Customer Loyalty Model in Securities Industry[J].,2010,(05):229.
[6]张笑达 徐立臻.一种改进的基于矩阵的频繁项集挖掘算法[J].计算机技术与发展,2010,(04):93.
 ZHANG Xiao-da,XU Li-zhen.An Advanced Frequent Itemsets Mining Algorithm Based on Matrix[J].,2010,(05):93.
[7]王爱平 王占凤 陶嗣干 燕飞飞.数据挖掘中常用关联规则挖掘算法[J].计算机技术与发展,2010,(04):105.
 WANG Ai-ping,WANG Zhan-feng,TAO Si-gan,et al.Common Algorithms of Association Rules Mining in Data Mining[J].,2010,(05):105.
[8]张广路 雷景生 吴兴惠.一种改进的Apriori关联规则挖掘算法(英文)[J].计算机技术与发展,2010,(06):84.
 ZHANG Guang-lu,LEI Jing-sheng,WU Xing-hui.An Improved Apriori Algorithm for Mining Association Rules[J].,2010,(05):84.
[9]吴楠 胡学钢.基于聚类分区的序列模式挖掘算法研究[J].计算机技术与发展,2010,(06):109.
 WU Nan,HU Xue-gang.Research on Clustering Partition-Based Approach of Sequential Pattern Mining[J].,2010,(05):109.
[10]吴青 傅秀芬.水平分布数据库的正负关联规则挖掘[J].计算机技术与发展,2010,(06):113.
 WU Qing,FU Xiu-fen.Positive and Negative Association Rules Mining on Horizontally Partitioned Database[J].,2010,(05):113.
[11]孟宪苹 宋菲 李俊.基于序列模式挖掘的入侵检测系统的研究[J].计算机技术与发展,2008,(03):154.
 MENG Xian-ping,SONG Fei,LI Jun.Research of Intrusion Detection System Based on Sequential Pattern Mining[J].,2008,(05):154.
[12]叶和平 尚敏.一种面向入侵检测的数据挖掘算法研究[J].计算机技术与发展,2008,(11):149.
 YE He-ping,SHANG Min.Study on an Intrusion Detection Oriented Data Mining Algorithm[J].,2008,(05):149.
[13]刘洪辉 吴岳芬.用户行为模式挖掘问题的研究[J].计算机技术与发展,2006,(05):50.
 LIU Hong-hui,WU Yue-fen.Research on User's Behavior Pattern Mining[J].,2006,(05):50.

更新日期/Last Update: 2018-07-06