[1]吴春香,张建明.无线感知网络中动作识别的滤波算法[J].计算机技术与发展,2018,28(05):86-90.[doi:10.3969/j.issn.1673-629X.2018.05.020]
 WU Chun-xiang,ZHANG Jian-ming.Filtering Algorithm for Motion Recognition in Wireless Sensor Networks[J].,2018,28(05):86-90.[doi:10.3969/j.issn.1673-629X.2018.05.020]
点击复制

无线感知网络中动作识别的滤波算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
28
期数:
2018年05期
页码:
86-90
栏目:
智能、算法、系统工程
出版日期:
2018-05-10

文章信息/Info

Title:
Filtering Algorithm for Motion Recognition in Wireless Sensor Networks
文章编号:
1673-629X(2018)05-0086-04
作者:
吴春香张建明
南京邮电大学 通信与信息工程学院,江苏 南京 210000
Author(s):
WU Chun-xiangZHANG Jian-ming
School of Communication and Information Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210000,China
关键词:
 信道状态信息主成分分析低通滤波均值滤波
Keywords:
channel state informationprincipal component analysislow pass filtermean filter
分类号:
TN925
DOI:
10.3969/j.issn.1673-629X.2018.05.020
文献标志码:
A
摘要:
近年来,一些学者提出了基于 WiFi 信号的人类活动识别系统。它们共同的特点是都使用了 CSI(信道状态信息),CSI 是运行在 802.11 协议下的 30 个子载波的信息,是在某个时刻对信道状态信息的频率响应的采样,在一定程度上是多径效应的数学表达。然而即使在静态环境中,WiFi 信号中的 CSI 值也容易产生波动,因为 WiFi 设备易受周围电磁噪声的影响。传统去噪方法如采用低通滤波器或均值滤波器,在去除这些脉冲和突发噪声方面表现不佳。对此,提出一种结合使用低通滤波器和主成分分析(PCA)的方法,在去除 CSI 中噪声的同时还降低了 CSI 数据信息的维度,提高了系统的运算效率。实验结果表明,该方法的提取特征相比传统方法去噪效果更为明显,大大提升了识别系统的准确性和精确度。
Abstract:
Recently,the human activity recognition systems based on WiFi have been proposed.Their common characteristic is to use the CSI (channel state information) which is the information of the 30 subcarriers running under the 802.11 protocol,and as the sampling of the frequency response of the channel state information at some point,is the mathematical expression of multipath effect to a certain extent.However,even in a static environment,CSI values in WiFi signals fluctuate because WiFi devices are susceptible to surrounding electromagnetic noises.General denoising methods,such as low -pass filters or mean filters,do not perform well in removing these impulse and bursty noises.For this,we propose a method combines the low pass filter and principal component analysis simultaneously,removing the noise in the CSI,while reducing the dimension of the CSI data and improving the efficiency of the system.Experiments show that the extracted features of the PCA method are more obvious than that of the traditional methods,which greatly enhance the accuracy and precision of the recognition system.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(05):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(05):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(05):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(05):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(05):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(05):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(05):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(05):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(05):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(05):47.

更新日期/Last Update: 2018-06-28