[1]韦性佳,张京花,芦殿军.基于ECC 的具有前向安全性的 VSS 方案[J].计算机技术与发展,2018,28(04):157-160.[doi:10.3969/ j. issn.1673-629X.2018.04.033]
 WEI Xing-jia,ZHANG Jing-hua,LU Dian-jun.A Forward Security Secret Sharing Scheme Based on ECC[J].,2018,28(04):157-160.[doi:10.3969/ j. issn.1673-629X.2018.04.033]
点击复制

基于ECC 的具有前向安全性的 VSS 方案()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
28
期数:
2018年04期
页码:
157-160
栏目:
安全与防范
出版日期:
2018-04-10

文章信息/Info

Title:
A Forward Security Secret Sharing Scheme Based on ECC
文章编号:
1673-629X(2018)04-0157-04
作者:
韦性佳张京花芦殿军
青海师范大学 数学与统计学院,青海 西宁 810008
Author(s):
WEI Xing-jiaZHANG Jing-huaLU Dian-jun
School of Mathematics and Statistics,Qinghai Normal University,Xining 810008,China
关键词:
椭圆曲线前向安全性可验证性秘密共享向量空间
Keywords:
elliptic curveforward securityverifiablesecret sharingvector space
分类号:
TP309
DOI:
10.3969/ j. issn.1673-629X.2018.04.033
文献标志码:
A
摘要:
秘密共享作为密码学的重要手段,已经广泛应用于安全的多方计算和分布式的密码学系统之中,但目前大多数秘密共享方案不具备前向安全性。 基于有限域上的椭圆曲线离散对数困难问题,结合前向安全性理论与向量空间存取结构,提出了一种新的具有前向安全性的可验证的秘密共享方案。 该方案可验证秘密与子秘密的准确性,实现可信中心与用户的双向验证;能够检测出系统中的欺诈行为,使得敌手无法伪造共享秘密;具有前向安全性,即使敌手掌握前一时间段的秘密也无法获取关于之前时间段秘密的任何信息,保障了共享秘密的安全性;具有门限性质,任何少于 t 个用户无法恢复共享秘密。 最后对方案的安全性和效率进行了分析,证明了该方案的安全性。
Abstract:
ecret sharing,as an important means of cryptography,has been widely used in secure multi-party computation and distributed cryptography. However,most secret sharing schemes do not have the character of forward security. In this paper,based on the discrete logarithm problem of elliptic curve over finite fields,combined with the forward security theory and the vector space access structure,we put forward a new verifiable secret sharing scheme with forward security. It verifies the accuracy of the secret and sub-secret and realizes the bidirectional authentication between trusted center and users. Moreover,it could detect the fraud of the system and makes it impossible for an adversary to forge a shared secret. With the forward security,even if the enemy has mastered the secret of the previous period of time,it cannot obtain any information,which guarantees the security of the shared secret. Having the property of threshold,any less than t users cannot recover the shared secret. Finally,the security and efficiency of the scheme are analyzed,and its security is proved.

相似文献/References:

[1]王龙葛 王天芹 田珂 徐飞.基于椭圆曲线的盲数字签名及其身份识别[J].计算机技术与发展,2008,(06):142.
 WANG Long-ge,WANG Tian-qin,TIAN Ke,et al.A Blind Digital Signature Scheme and User Authentication Based on Elliptic Curves Cryptosystem[J].,2008,(04):142.
[2]梁雨平 汤小华.一种前向安全性的可证实代理数字签名方案[J].计算机技术与发展,2007,(07):142.
 LIANG Yu-ping,TANG Xiao-hua.A Certifiable Representative Digital Signature Approach Based on Forward Security[J].,2007,(04):142.
[3]石润华 仲红.基于椭圆曲线离散对数的组签名方案[J].计算机技术与发展,2007,(11):153.
 SHI Run-hua,ZHONG Hong.Group Signature Schemes Based on Elliptic Curve Discrete Logarithm[J].,2007,(04):153.
[4]蔡庆华.一个基于椭圆曲线的前向安全的签密方案[J].计算机技术与发展,2007,(12):132.
 CAI Qing-hua.A Signcryption Scheme with Forward Security Based on ECC[J].,2007,(04):132.
[5]孟彦 侯整风 昂东宇 周循.基于椭圆曲线的单轮零知识证明方案[J].计算机技术与发展,2007,(12):147.
 MENG Yan,HOU Zheng-feng,ANG Dong-yu,et al.One- Round Zero- Knowledge Proofs Protocol Based on Elliptic Curve[J].,2007,(04):147.
[6]于雪燕 胡金初 柴春轶.椭圆曲线密码体制及其参数生成的研究[J].计算机技术与发展,2006,(11):160.
 YU Xue-yan. HU Jin-chu,CHAI Chun-yi.Research. on Elliptic Curves Cryptosystems and References Generating[J].,2006,(04):160.
[7]蒋华[][],杨磊[] 胡荣磊[]. 基于SIP协议的安全网关设计[J].计算机技术与发展,2015,25(07):120.
 JIANG Hua[][],YANG Lei[],HU Rong-lei[]. Design of Security Gateway Based on SIP[J].,2015,25(04):120.
[8]袁勇[][][],唐刚[],陈辉焱[],等. 基于MOF算法改进的标量乘算法研究[J].计算机技术与发展,2016,26(12):111.
 YUAN Yong[][][],TANG Gang[],CHEN Hui-yan[],et al. Research on Improved Scalar Multiplication Algorithm Based on MOF[J].,2016,26(04):111.
[9]孙旭敏,刘彩霞.基于椭圆曲线的识别伪基站垃圾短信改进算法[J].计算机技术与发展,2018,28(07):121.[doi:10.3969/ j. issn.1673-629X.2018.07.026]
 SUN Xu-min,LIU Cai-xia.n Improved Algorithm of Identifying Spam Message of Pseudo Base Station Based on Elliptic Curve[J].,2018,28(04):121.[doi:10.3969/ j. issn.1673-629X.2018.07.026]
[10]韦性佳,芦殿军*.基于中国剩余定理的前向安全的聚合签名方案[J].计算机技术与发展,2021,31(04):137.[doi:10. 3969 / j. issn. 1673-629X. 2021. 04. 023]
 WEI Xing-jia,LU Dian-jun*.Forward Secure Aggregated Signature Scheme Based onChinese Remainder Theorem[J].,2021,31(04):137.[doi:10. 3969 / j. issn. 1673-629X. 2021. 04. 023]

更新日期/Last Update: 2018-06-08