[1]张振宇,朱培栋,王可,等.拓扑结构与节点属性综合分析的社区发现算法[J].计算机技术与发展,2018,28(04):1-5.[doi:10.3969/ j. issn.1673-629X.2018.04.001]
 ZHANG Zhen-yu,ZHU Pei-dong,WANG Ke,et al.A Community Detecting Algorithm Based on Comprehensive Analysis of Network Topology and Node Attributes[J].,2018,28(04):1-5.[doi:10.3969/ j. issn.1673-629X.2018.04.001]
点击复制

拓扑结构与节点属性综合分析的社区发现算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
28
期数:
2018年04期
页码:
1-5
栏目:
智能、算法、系统工程
出版日期:
2018-04-10

文章信息/Info

Title:
A Community Detecting Algorithm Based on Comprehensive Analysis of Network Topology and Node Attributes
文章编号:
1673-629X(2018)04-0001-05
作者:
张振宇朱培栋王可胡慧俐
国防科学技术大学 计算机学院,湖南 长沙 410073
Author(s):
ZHANG Zhen-yuZHU Pei-dongWANG KeHU Hui-li
School of Computer,National University of Defense Technology,Changsha 410073,China
关键词:
社区发现Spearman 相关性后验概率模糊传递闭包社区层次
Keywords:
community detectingSpearman correlationposterior probabilityfuzzy transfer closurecommunity level
分类号:
TP301.6
DOI:
10.3969/ j. issn.1673-629X.2018.04.001
文献标志码:
A
摘要:
社交网络的社区发现对于理解网络功能、识别网络连接层次性及预测社交网络用户的复杂群体行为有着极其重要的基础性作用。 鉴于现有社区发现算法通常只基于拓扑结构或节点属性单种因素提出,提出一种综合两方面因素的社区发现算法。 该算法首先基于 Spearman 相关系数对初始数据进行去相关性处理,避免后续分析的相关性误差;然后引入后验概率理论进行稳定性赋权,综合拓扑与属性两影响因素;最后根据模糊传递闭包原理,从关系变换的角度进行社区发现。 与经典社区发现算法相比,该算法不仅提高了社区发现的准确性,且在一定程度上解决了社区结构中网络动态性影
响及社区层次性问题。
Abstract:
Community detecting of social networks plays a significant role in understanding network functions,identifying network connection levels and predicting complex behaviors of social network users. Given that existing community detecting algorithms are mainly based on single factor involving the topology or attribute,we present a community detecting algorithm integrated two factors. To startwith,the initial data is decorrelated based on the Spearman correlation coefficient to avoid the correlation error of the following analysis.In addition,the posterior probability theory is applied to weight stabilization by integrating topology and attribute. At last,according to the principle of fuzzy transfer closure,community can be detected from the perspective of transforming relation. Compared with classical community detecting algorithms,the proposed algorithm not only improves the accuracy,but also solves problems of network dynamics and
community level in community structure to a certain extent.

相似文献/References:

[1]张璋,张然,朱东生. 关系数据库中社区发现方法研究[J].计算机技术与发展,2014,24(08):108.
 ZHANG Zhang,ZHANG Ran,ZHU Dong-sheng. Research on Community Discovery Methods in Relational Database[J].,2014,24(04):108.
[2]顾炎,熊超. 动态社区的点增量发现算法[J].计算机技术与发展,2017,27(06):81.
 GU Yan,XIONG Chao. Vertex-based Incremental Algorithm for DynamicCommunities Detecting[J].,2017,27(04):81.
[3]王刚.一种融合贝叶斯概率的社区结构发现方法研究[J].计算机技术与发展,2019,29(01):110.[doi:10. 3969 / j. issn. 1673-629X. 2019. 01. 023]
 WANG Gang.Research on a Community Structure Detection Method Based onBayesian Probability[J].,2019,29(04):110.[doi:10. 3969 / j. issn. 1673-629X. 2019. 01. 023]
[4]王学军,李有红,李炽平.基于密度自适应聚类数的社区发现谱方法[J].计算机技术与发展,2019,29(05):81.[doi:10. 3969 / j. issn. 1673-629X. 2019. 05. 018]
 WANG Xue-jun,LI You-hong,LI Chi-ping.A Community Detection Spectral Clustering Method Based on Density Adaptive Generation Cluster Number[J].,2019,29(04):81.[doi:10. 3969 / j. issn. 1673-629X. 2019. 05. 018]

更新日期/Last Update: 2018-05-29