[1]史宝鹏,段 迅,孔广黔,等.应用分类模型研究迟发性颅脑损伤的影响因素[J].计算机技术与发展,2018,28(03):201-204.[doi:10.3969/ j. issn.1673-629X.2018.03.043]
 SHI Bao-peng,DUAN Xun,KONG Guang-qian,et al.Study on Influencing Factors of Delayed Craniocerebral Brain Injury by Classification Model[J].,2018,28(03):201-204.[doi:10.3969/ j. issn.1673-629X.2018.03.043]
点击复制

应用分类模型研究迟发性颅脑损伤的影响因素()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
28
期数:
2018年03期
页码:
201-204
栏目:
应用开发研究
出版日期:
2018-03-10

文章信息/Info

Title:
Study on Influencing Factors of Delayed Craniocerebral Brain Injury by Classification Model
文章编号:
1673-629X(2018)03-0201-04
作者:
史宝鹏段 迅孔广黔吴 云
贵州大学 计算机科学与技术学院,贵州 贵阳 550025
Author(s):
SHI Bao-pengDUAN XunKONG Guang-qianWU Yun
School of Computer Science &Technology,Guizhou University,Guiyang 550025,China
关键词:
数据挖掘分类模型逻辑回归决策树医疗
Keywords:
data miningclassification modellogistic regressiondecision treemedical treatment
分类号:
TP39
DOI:
10.3969/ j. issn.1673-629X.2018.03.043
文献标志码:
A
摘要:
迟发性颅脑损伤是危害人类健康及生命的常见疾病之一。 文中使用 SPSS 统计分析软件根据已有的患者信息进行分析,并使用模型联合应用技术,以逻辑回归为主模型给出明确的回归方程;以决策树模型为辅助模型探索变量间的交互作用;用探索结果指导逻辑回归的建模,使得模型更加准确。 实验结果表明,激素是预防迟发性颅脑损伤作用最大的因素;舒张压和血小板对迟发性颅脑损伤的发生也有较大影响;同时,舒张压和血小板交互作用对迟发性颅脑损伤的发生也有一定影响。 这一研究发现能更快更好地找出导致迟发性颅脑损伤的主要原因,辅助医生对患者是否发生迟发性颅脑损伤做出判断并做出更为精准的诊疗方案,降低患者发生迟发性颅脑损伤的概率。
Abstract:
The delayed brain injury is one of the common diseases of endangering human health and life. According to SPSS statistical analysis software to analyze the existing patient information,we use the model joint application technology to give the regression equation with the logistic regression as the main model,explore the interaction between variables with decision tree model as the auxiliary and guide the logistic regression modeling with the exploration results,which makes the model more accurate. The experiments show that the hormone is the most important factor in preventing delayed brain injury. The diastolic blood pressure and the platelet have a great influence on the occurrence of delayed brain injury,and the interaction of them do so at the same time. The study can find the main cause of delayed brain injury faster and better,which assists the doctors to determine whether the patients have a delayed brain injury and to make a more accurate diagnosis and treatment program for reduction of the probability of patients with delayed traumatic brain injury.

相似文献/References:

[1]项响琴 汪彩梅.基于聚类高维空间算法的离群数据挖掘技术研究[J].计算机技术与发展,2010,(01):120.
 XIANG Xiang-qin,WANG Cai-mei.Study of Outlier Data Mining Based on CLIQUE Algorithm[J].,2010,(03):120.
[2]李雷 丁亚丽 罗红旗.基于规则约束制导的入侵检测研究[J].计算机技术与发展,2010,(03):143.
 LI Lei,DING Ya-li,LUO Hong-qi.Intrusion Detection Technology Research Based on Homing - Constraint Rule[J].,2010,(03):143.
[3]吉同路 柏永飞 王立松.住宅与房地产电子政务中数据挖掘的应用研究[J].计算机技术与发展,2010,(01):235.
 JI Tong-lu,BAI Yong-fei,WANG Li-song.Study and Application of Data Mining in E-government of House and Real Estate Industry[J].,2010,(03):235.
[4]杨静 张楠男 李建 刘延明 梁美红.决策树算法的研究与应用[J].计算机技术与发展,2010,(02):114.
 YANG Jing,ZHANG Nan-nan,LI Jian,et al.Research and Application of Decision Tree Algorithm[J].,2010,(03):114.
[5]赵裕啸 倪志伟 王园园 伍章俊.SQL Server 2005数据挖掘技术在证券客户忠诚度的应用[J].计算机技术与发展,2010,(02):229.
 ZHAO Yu-xiao,NI Zhi-wei,WANG Yuan-yuan,et al.Application of Data Mining Technology of SQL Server 2005 in Customer Loyalty Model in Securities Industry[J].,2010,(03):229.
[6]张笑达 徐立臻.一种改进的基于矩阵的频繁项集挖掘算法[J].计算机技术与发展,2010,(04):93.
 ZHANG Xiao-da,XU Li-zhen.An Advanced Frequent Itemsets Mining Algorithm Based on Matrix[J].,2010,(03):93.
[7]王爱平 王占凤 陶嗣干 燕飞飞.数据挖掘中常用关联规则挖掘算法[J].计算机技术与发展,2010,(04):105.
 WANG Ai-ping,WANG Zhan-feng,TAO Si-gan,et al.Common Algorithms of Association Rules Mining in Data Mining[J].,2010,(03):105.
[8]张广路 雷景生 吴兴惠.一种改进的Apriori关联规则挖掘算法(英文)[J].计算机技术与发展,2010,(06):84.
 ZHANG Guang-lu,LEI Jing-sheng,WU Xing-hui.An Improved Apriori Algorithm for Mining Association Rules[J].,2010,(03):84.
[9]吴楠 胡学钢.基于聚类分区的序列模式挖掘算法研究[J].计算机技术与发展,2010,(06):109.
 WU Nan,HU Xue-gang.Research on Clustering Partition-Based Approach of Sequential Pattern Mining[J].,2010,(03):109.
[10]吴青 傅秀芬.水平分布数据库的正负关联规则挖掘[J].计算机技术与发展,2010,(06):113.
 WU Qing,FU Xiu-fen.Positive and Negative Association Rules Mining on Horizontally Partitioned Database[J].,2010,(03):113.

更新日期/Last Update: 2018-05-15