[1]吴 超,邵 曦.基于深度学习的指静脉识别研究[J].计算机技术与发展,2018,28(02):200-204.[doi:10.3969/j.issn.1673-629X.2018.02.043]
 WU Chao,SHAO Xi.Research on Finger Vein Recognition Based on Deep Learning[J].,2018,28(02):200-204.[doi:10.3969/j.issn.1673-629X.2018.02.043]
点击复制

基于深度学习的指静脉识别研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
28
期数:
2018年02期
页码:
200-204
栏目:
应用开发研究
出版日期:
2018-02-10

文章信息/Info

Title:
Research on Finger Vein Recognition Based on Deep Learning
文章编号:
1673-629X(2018)02-0200-05
作者:
吴 超邵 曦
南京邮电大学 通信与信息工程学院,江苏 南京 21000
Author(s):
WU ChaoSHAO Xi
School of Communication and Information Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210003,China
关键词:
指静脉识别形态学算法角度修正算法深度学习
Keywords:
finger vein recognitionmorphological algorithmangle correction algorithmdeep learning
分类号:
TP301.6
DOI:
10.3969/j.issn.1673-629X.2018.02.043
文献标志码:
A
摘要:
提出了基于深度学习的指静脉识别算法。在指静脉图像采集过程中,由于受光照强度的影响,手指轮廓存在一定的高通滤波器来增强图像。指静脉采集过程中,手指存在不同程度的旋转,为了消除该影响,使用角度修正算法对指静脉图像进行矫正。由于深度学习在图像分类上表现优异,尤其是 AlexNet 在 ImageNet 大赛中的杰出表现,因此采用基于 AlexNet 的深度神经网络对指静脉图像进行分类。为了加快训练速度,在 AlexNet 深度神经网络的基础上提出改进方案,主要包括改变卷积核大小和卷积层的构造,从而减少网络参数,降低网络复杂度,加速网络的训练。实验结果表明,利用深度学习对指静脉图像进行分类具有较好的效果。
Abstract:
In this paper,we put forward a finger vein recognition algorithm based on deep learning.In the collection of finger vein image,sometimes the finger contour is blur due to the influence of illumination intensity.In order to obtain a clear vein image,morphological algorithm is used to extract the region of interest for the original image,and the Gaussian high pass filter is adopted to enhance it.An angle correction algorithm is for eliminating the influence caused by the different degrees of finger rotation in the collection of finger vein image.Moreover,deep learning is performed well in image classification,especially the AlexNet in the ImageNet contest.Therefore,the neural network based on AlexNet is adopted to classify the finger vein image.In order to speed up the training,we modify the structure of the AlexNet network,including the size of the convolution kernel and the structure of the convolution layer,which lowers the network parameters,reduces network complexity,and accelerates the training of the network.The experiments show that using deep learning for classification of finger vein image has better effect.

相似文献/References:

[1]刘广东,邱晓晖.基于多模式LBP 与深度森林的指静脉识别[J].计算机技术与发展,2018,28(07):83.[doi:10.3969/ j. issn.1673-629X.2018.07.018]
 LIU Guang-dong,QIU Xiao-hui.Finger Vein Recognition Based on Multi-mode LBP and Deep Forest[J].,2018,28(02):83.[doi:10.3969/ j. issn.1673-629X.2018.07.018]

更新日期/Last Update: 2018-04-03