[1]徐静妹,李 雷.基于稀疏表示和支持向量机的人脸识别算法[J].计算机技术与发展,2018,28(02):59-63.[doi:10.3969/j.issn.1673-629X.2018.02.014]
 XU Jingmei,LI Lei.A Face Recognition Algorithm Based on Sparse Representation and Support Vector Machine[J].,2018,28(02):59-63.[doi:10.3969/j.issn.1673-629X.2018.02.014]
点击复制

基于稀疏表示和支持向量机的人脸识别算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
28
期数:
2018年02期
页码:
59-63
栏目:
智能、算法、系统工程
出版日期:
2018-02-10

文章信息/Info

Title:
A Face Recognition Algorithm Based on Sparse Representation and Support Vector Machine
文章编号:
1673-629X(2018)02-0059-05
作者:
徐静妹李 雷
南京邮电大学,江苏 南京 210023
Author(s):
XU Jing-meiLI Lei
Nanjing University of Posts and Telecommunications,Nanjing 210023,China
关键词:
人脸识别稀疏表示正交匹配追踪法多分类支持向量机
Keywords:
face recognitionsparse representationorthogonal matching pursuitmulti-class SVM
分类号:
TP301.6
DOI:
10.3969/j.issn.1673-629X.2018.02.014
文献标志码:
A
摘要:
随着人脸识别技术的发展和应用,现今人脸识别的方法也趋于多样化,其中基于稀疏表示分类(SRC)的人脸识别方法是随着压缩感知理论兴起而诞生的一种全局线性方法。在先前研究的基础上,文中提出用正交匹配追踪法(OMP)代替梯度投影法(GPSR)来求解稀疏表示模型,通过设置稀疏阈值来控制稀疏系数的稀疏度,消除了非零系数出现在非样本所在类的现象。此外,基于 SRC 的人脸识别的识别准则是重构残差最小,对于一个测试样本,需要计算其与其他每一个样本的相似度,识别效率低。针对这个缺点,提出将多分类支持向量机作为最后分类的工具,在 ORL 人脸库上进行了实验验证,结果表明,该方法可以提高人脸识别的速度和准确率。
Abstract:
With the development and application of face recognition technique,the face recognition methods are also diversified at present.The face recognition method based on sparse representation classification (SRC) is a global linear method based on the rise of compression perception theory.Based on the previous research,we propose solving the sparse representation model by orthogonal matching pursuit (OMP) instead of gradient projection for sparse reconstruction (GPSR).The sparse threshold is set to control the sparsity of sparse coefficients,eliminating the phenomenon that nonzero coefficients appear in nonclass samples.In addition,the recognition criterion of face recognition based on SRC is the minimum reconstruction residuals.For a test sample,it is necessary to calculate its similarity to each other one and the recognition efficiency is low.For this shortcoming,we propose a multi-class support vector machine as the final classification tool.The results on ORL show that this method can improve the speed and accuracy of face recognition.

相似文献/References:

[1]徐钊,吴光敏,覃世欢.基于AccelDSP的LBP算法在人脸识别中的应用[J].计算机技术与发展,2014,24(01):51.
 XU Zhao,WU Guang-min,QIN Shi-huan.Application of LBP Algorithm Based on AccelDSP in Face Recognition[J].,2014,24(02):51.
[2]时书剑 马燕.基于Gabor滤波和KPCA的人脸识别方法[J].计算机技术与发展,2010,(04):51.
 SHI Shu-jian,MA Yan.Face Recognition Based on Gabor Filters and Kernel Principal Component Analysis[J].,2010,(02):51.
[3]袁健 姚明海.基于简化局部二元法的人脸特征提取[J].计算机技术与发展,2009,(06):84.
 YUAN Jian,YAO Ming-hai.Facial Feature Extraction Based on Simplified Local Binary Patterns[J].,2009,(02):84.
[4]李伟.人脸识别算法在智能手机上的实现[J].计算机技术与发展,2008,(01):161.
 LI Wei.Implementation of Face Identification in Intelligent Mobile Telephone[J].,2008,(02):161.
[5]黄国宏 刘刚.一种新的基于Fisher准则的线性特征提取方法[J].计算机技术与发展,2008,(05):227.
 HUANG Guo-hong,LIU Gang.A New Linear Feature Extraction Method Based on Fisher Criterion[J].,2008,(02):227.
[6]孙晓玲 侯德文 储凡静.人脸识别中的眼睛定位方法[J].计算机技术与发展,2008,(10):46.
 SUN Xiao-ling,HOU De-wen,CHU Fan-jing.Eye Location in Face Recogniton[J].,2008,(02):46.
[7]王静 谭同德.基于梯度和模板二次匹配的人眼定位[J].计算机技术与发展,2007,(10):144.
 WANG Jing,TAN Tong-de.A Method to Eyes Location Based on Step- Direction and Templet - Matching[J].,2007,(02):144.
[8]高宏娟 潘晨.基于非负矩阵分解的人脸识别算法的改进[J].计算机技术与发展,2007,(11):63.
 GAO Hong-juan,PAN Chen.Improved Face Recognition Algorithm Based on Non- Negative Matrix Factorization[J].,2007,(02):63.
[9]徐勇 张海 周森鑫 王辉.基于统计学习理论的人脸识别方法研究[J].计算机技术与发展,2007,(11):118.
 XU Yong,ZHANG Hai,ZHOU Sen-xin,et al.Research on Face Recognition Based on Statistical Learning Theory[J].,2007,(02):118.
[10]马驰 阮秋琦.基于离散微粒群优化算法的SVM参数选择[J].计算机技术与发展,2007,(12):20.
 MA Chi,RUAN Qiu-qi.Parameter Selection for SVM Based on Discrete PSO[J].,2007,(02):20.
[11]朱伟冬 胡剑凌.基于马氏距离的稀疏表示分类算法[J].计算机技术与发展,2011,(11):27.
 ZHU Wei-dong,HU Jian-ling.Sparse Representation Classification Algorithm Based on Mahalanobis Distance[J].,2011,(02):27.
[12]谢文浩,翟素兰. 基于加权稀疏近邻表示的人脸识别[J].计算机技术与发展,2016,26(02):22.
 XIE Wen-hao,ZHAI Su-lan. Face Recognition Based on Weighted Sparse Neighbor Representation[J].,2016,26(02):22.
[13]谢尚高,王丽平. 基于同类测试样本组的稀疏表示人脸识别[J].计算机技术与发展,2017,27(08):7.
 XIE Shang-gao,WANG Li-ping. Sparse Representation Classification for Face Recognition with Intra-class Testing-sample Group[J].,2017,27(02):7.
[14]虞 涛,童 莹,曹雪虹.基于迭代加权低秩分解的遮挡人脸识别算法[J].计算机技术与发展,2019,29(06):42.[doi:10. 3969 / j. issn. 1673-629X. 2019. 06. 009]
 YU Tao,TONG Ying,CAO Xue-hong.An Occlusion Face Recognition Algorithm Based on Iteratively Reweighted Robust Principal Component[J].,2019,29(02):42.[doi:10. 3969 / j. issn. 1673-629X. 2019. 06. 009]

更新日期/Last Update: 2018-03-27