[1]周 航,董西伟,荆晓远.基于优化字典设计的 MOD 字典学习算法[J].计算机技术与发展,2018,28(01):56-59.[doi:10.3969/ j. issn.1673-629X.2018.01.012]
 ZHOU Hang,DONG Xi-wei,JING Xiao-yuan.Design of MOD Dictionary Learning Algorithm Based onOptimized Dictionary[J].Computer Technology and Development,2018,28(01):56-59.[doi:10.3969/ j. issn.1673-629X.2018.01.012]
点击复制

基于优化字典设计的 MOD 字典学习算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
28
期数:
2018年01期
页码:
56-59
栏目:
智能、算法、系统工程
出版日期:
2018-01-10

文章信息/Info

Title:
Design of MOD Dictionary Learning Algorithm Based on
Optimized Dictionary
文章编号:
1673-629X(2018)01-0056-04
作者:
周 航1 董西伟12 荆晓远1
1. 南京邮电大学 自动化学院,江苏 南京 210023;
2. 九江学院 信息科学与技术学院,江西 九江 332005
Author(s):
ZHOU Hang1 DONG Xi-wei12 JING Xiao-yuan1
1. School of Automation,Nanjing University of Posts and Telecommunications,Nanjing 210023,China;
2. School of Information Science and Technology,Jiujiang University,Jiujiang 332005,China
关键词:
稀疏表示字典学习MOD 算法竞争聚集
Keywords:
sparse representationdictionary learningMOD algorithmcompetitive agglomeration
分类号:
TP301
DOI:
10.3969/ j. issn.1673-629X.2018.01.012
文献标志码:
A
摘要:
在模式识别研究领域,有关人脸识别的研究一直备受关注,并且已经成功地应用于诸多社会公共安全防护领域。近年来,随着压缩感知理论的发展,稀疏表示因其出色的分类性能以及对噪声因素的鲁棒性而受到众多研究者的关注,并且被成功地应用于人脸识别当中。 基于稀疏表示的分类算法的性能优劣与学习到的字典息息相关,因此字典的优化设计非常值得深入研究。 文中在经典的 MOD 算法中加入聚类算法,提出一种增强型 MOD 字典学习算法(E-MOD)。 该算法在字典学习阶段使用聚类算法来优化字典的设计,去除冗余的字典原子数,得到性能优秀的字典;接着为了使学习到的字典具有判别性能,进一步使用 MOD 算法继续学习,最终得到分类效果更佳的字典。 在 AR 和 CAS-PEAL 人脸数据库上的
对比实验有效地验证了 E-MOD 算法的性能。
Abstract:
In pattern recognition,research on face recognition has attracted much attention,with successful application to many areas of social public security protection. Recently,with the rising of compressive sensing,sparse representation has received extensive attention because of its excellent classification and robustness to noise,which has been successfully used in face recognition. The performance of sparse representation based classification is closely to the learned dictionary,so optimized design of dictionary is a very worthwhile study
project. Adding clustering algorithm into the classical MOD algorithm,an Enhanced MOD (E-MOD) algorithm is proposed in this paper. The clustering algorithm is used to optimize the design of dictionary in the dictionary learning phase,removing the redundant dictionary atoms,getting the better performance dictionary. Then with MOD algorithm to further continue learning in order to make the dictiona-
ry are discriminative,it can make the dictionary has superior classification effect. The comparison experiments on the AR and CAS-PEAL face databases have verified the effectiveness of the proposed algorithm.

相似文献/References:

[1]朱伟冬 胡剑凌.基于马氏距离的稀疏表示分类算法[J].计算机技术与发展,2011,(11):27.
 ZHU Wei-dong,HU Jian-ling.Sparse Representation Classification Algorithm Based on Mahalanobis Distance[J].Computer Technology and Development,2011,(01):27.
[2]王韦刚 庄伟胤.基于NIOS Ⅱ的图像压缩感知[J].计算机技术与发展,2012,(04):12.
 WANG Wei-gang,ZHUANG Wei-yin.Compressed Sensing of Image Based on NIOS Ⅱ[J].Computer Technology and Development,2012,(01):12.
[3]葛广重,杨敏.基于稀疏表示的单幅图像超分辨率重建[J].计算机技术与发展,2013,(09):113.
 GE Guang-zhong,YANG Min.Single Image Super-resolution Reconstruction Based on Sparse Representation[J].Computer Technology and Development,2013,(01):113.
[4]赵海峰,于雪敏,邹际祥,等.基于L1范数主成分分析的颅脑图像恢复[J].计算机技术与发展,2014,24(01):231.
 ZHAO Hai-feng[],YU Xue-min[],ZOU Ji-xiang[],et al.Cerebral Image Recovery Based on L1-norm Principal Component Analysis[J].Computer Technology and Development,2014,24(01):231.
[5]陈静,邱晓晖,孙娜. 基于二维Gabor小波与SPP算法的人脸识别研究[J].计算机技术与发展,2014,24(11):110.
 CHEN Jing,QIU Xiao-hui,SUN Na. Research on Face Recognition Based on 2 D Gabor Wavelet and SPP Algorithm[J].Computer Technology and Development,2014,24(01):110.
[6]姚刚,杨敏. 稀疏子空间聚类的惩罚参数自调整交替方向法[J].计算机技术与发展,2014,24(11):131.
 YAO Gang,YANG Min. Alternating Direction Method of Self-adjusting Penalty Parameters of Sparse Subspace Clustering[J].Computer Technology and Development,2014,24(01):131.
[7]徐静妹,李 雷.基于稀疏表示和支持向量机的人脸识别算法[J].计算机技术与发展,2018,28(02):59.[doi:10.3969/j.issn.1673-629X.2018.02.014]
 XU Jingmei,LI Lei.A Face Recognition Algorithm Based on Sparse Representation and Support Vector Machine[J].Computer Technology and Development,2018,28(01):59.[doi:10.3969/j.issn.1673-629X.2018.02.014]
[8]钱阳,李雷. 一种基于新型KPCA算法的视频压缩感知算法[J].计算机技术与发展,2015,25(10):101.
 QIAN Yang,LI Lei. A Video Compressed Sensing Algorithm Based on Novel KPCA[J].Computer Technology and Development,2015,25(01):101.
[9]于云,周伟栋. 基于稀疏表示的鲁棒性说话人识别系统[J].计算机技术与发展,2015,25(12):41.
 YU Yun,ZHOU Wei-dong. Robust Speaker Recognition System Based on Sparse Representation[J].Computer Technology and Development,2015,25(01):41.
[10]谢文浩,翟素兰. 基于加权稀疏近邻表示的人脸识别[J].计算机技术与发展,2016,26(02):22.
 XIE Wen-hao,ZHAI Su-lan. Face Recognition Based on Weighted Sparse Neighbor Representation[J].Computer Technology and Development,2016,26(01):22.
[11]余琨,荆晓远,吴飞,等. 基于竞争聚集的K-SVD字典学习算法[J].计算机技术与发展,2015,25(11):44.
 YU Kun,JING Xiao-yuan,WU Fei,et al. K-SVD Dictionary Learning Algorithm Based on Competitive Agglomeration[J].Computer Technology and Development,2015,25(01):44.
[12]李欣,崔子冠,陈杰,等. 基于局部回归和自相似性的图像超分辨率重建[J].计算机技术与发展,2016,26(10):17.
 LI Xin,CUI Zi-guan,CHEN Jie,et al. Image Super-resolution Reconstruction Based on Local Regression and Self-similarity[J].Computer Technology and Development,2016,26(01):17.
[13]钱阳,李雷. 基于新型鲁棒字典学习的视频帧稀疏表示[J].计算机技术与发展,2017,27(02):37.
 QIAN Yang,LI Lei. Sparse Representation of Video Frame Based on Novel Robust Dictionary Learning[J].Computer Technology and Development,2017,27(01):37.
[14]钱阳,李雷,袁安安. 基于自适应K-SVD字典的视频帧稀疏重建算法[J].计算机技术与发展,2017,27(06):36.
 QIAN Yang,LI Lei,YUAN An-an. An Adaptive K-SVD Dictionary Learning Algorithm for Video Frame Sparse Reconstruction[J].Computer Technology and Development,2017,27(01):36.
[15]陈春林,张礼,刘学军. 针对SAR图像的树形稀疏表示结构识别算法研究[J].计算机技术与发展,2017,27(08):20.
 CHEN Chun-lin,ZHANG Li,LIU Xue-jun. Investigation on Identification Algorithm of Tree-structure Sparse Representation for SAR Target[J].Computer Technology and Development,2017,27(01):20.
[16]沈怡灵,赵明哲,李强懿,等.基于稀疏表示的二值图像超分辨率重建算法[J].计算机技术与发展,2017,27(12):43.[doi:10.3969/ j. issn.1673-629X.2017.12.010]
 SHEN Yi-ling,ZHAO Ming-zhe,LI Qiang-yi,et al.A Super-resolution Reconstruction Algorithm for Binary Image Based on Sparse Representation[J].Computer Technology and Development,2017,27(01):43.[doi:10.3969/ j. issn.1673-629X.2017.12.010]
[17]汤中民,唐贵进,刘小花,等.一种新的字典更新和原子优化的图像去噪算法[J].计算机技术与发展,2019,29(04):33.[doi:10. 3969 / j. issn. 1673-629X. 2019. 04. 007]
 TANG Zhong-min,TANG Gui-jin,LIU Xiao-hua,et al.A New Image Denoising Algorithm Based on Dictionary Updating and Atom Optimization[J].Computer Technology and Development,2019,29(01):33.[doi:10. 3969 / j. issn. 1673-629X. 2019. 04. 007]
[18]王 君,唐贵进,刘小花,等.基于 Criminisi 的结构组稀疏表示图像修复算法[J].计算机技术与发展,2020,30(03):24.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 005]
 WANG Jun,TANG Gui-jin,LIU Xiao-hua,et al.Criminisi-based Structural Group Sparse Representation for Image Inpainting[J].Computer Technology and Development,2020,30(01):24.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 005]
[19]张敬尊,张睿哲,徐光美,等.稀疏表示模型及高光谱遥感应用研究[J].计算机技术与发展,2020,30(10):173.[doi:10. 3969 / j. issn. 1673-629X. 2020. 10. 031]
 ZHANG Jing-zun,ZHANG Rui-zhe,XU Guang-mei,et al.Research of Sparse Models and Applications in Hyperspectral Images[J].Computer Technology and Development,2020,30(01):173.[doi:10. 3969 / j. issn. 1673-629X. 2020. 10. 031]

更新日期/Last Update: 2018-03-12