[1]李宏林. 分析式纹理合成技术及其在深度学习的应用[J].计算机技术与发展,2017,27(11):7-13.
 LI Hong-lin. Analyzed Texture-synthesis Techniques and Their Applications in Deep Learning[J].,2017,27(11):7-13.
点击复制

 分析式纹理合成技术及其在深度学习的应用()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年11期
页码:
7-13
栏目:
智能、算法、系统工程
出版日期:
2017-11-10

文章信息/Info

Title:
 Analyzed Texture-synthesis Techniques and Their Applications in Deep Learning
文章编号:
1673-629X(2017)11-0007-07
作者:
 李宏林
 日本山梨大学 大学院 生命情报系统系
Author(s):
 LI Hong-lin
关键词:
 分析式纹理合成法非参数法纹理生成参数法纹理生成深度学习卷积神经网络VGG-19
Keywords:
 analyzed texture synthesis methodnon-parametric texture generationparametric texture generationdeep learningconvolu-tional neural networkVGG-19
分类号:
TP37
文献标志码:
A
摘要:
 
当前国际主流的非参数和参数法分析式纹理生成技术,对于计算机视觉领域的图像纹理合成具有一定的借鉴意义.在概括总结与比较分析式纹理生成技术原理、框架结构、应用发展趋势及其优缺点的基础上,分析了基于graph cut模型的非参数法、基于P&S模型的参数法两种典型的纹理生成技术以及广泛应用于图像处理领域的深度学习新技术—卷积神经网络(CNN)的结构与原理,进一步讨论了以基于CNN的Caffe网络框架及在2014年ImagNet图像分类和目标识别大赛上取得优异成绩的VGG模型为基础的分析式纹理生成模型VGG-19的工作原理及其在人脑视觉分析研究方面的应用.分析结果表明:相对于普通参数法和基于CNN网络模型的参数法,非参数法具有更快的处理速度,可生成更高视觉质量与更多种类的目标纹理图;参数法适合作为纹理合成领域的分析研究工具;卷积神经网络应用到参数法中,可大幅缩短特征量设计与参数调整周期并提高合成效果,进一步提升了参数法作为理论分析和应用实现工具的价值.
Abstract:
 The state-of-the-art analyzed texture synthesis techniques are divided into non-parametric and parametric methods, which contribute to the current corresponding research on computer vision. By summarizing and comparing their principles,structures,develop-ment trends,advantages and disadvantages,a non-parametric method based on graph-cut model and a parametric method based on P&S model are analyzed in detail. In addition,the structures and principles of Convolution Neural Network ( CNN) based on deep-learning which are widely applied in image-process filed are also discussed. Finally,a new texture synthesis model VGG-19 is introduced,which is the combination of CNN-based Caffe network with VGG model that obtained high scores in the 2014 ImageNet classification and ob-ject detection competence. The VGG-19 model can be also used to analyze human visual process. The analyzed results show the facts as below. Non-parametric methods can synthesize high-quality textures of various kinds with high speed. Parametric methods are appropri-ate for being used as analysis tools. CNN applied in parametric methods can greatly reduce the time period of designing and adjusting fea-ture representations and parameters and improve the synthesized results synchronously,which is proved to be valuable tools for analyzing theory and realizing applications on texture-synthesis work.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(11):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(11):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(11):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(11):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(11):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(11):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(11):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(11):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(11):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(11):47.

更新日期/Last Update: 2017-12-25