[1]刘凌云[],许少华[][]. 基于模糊推理过程神经网络的沉积微相判别[J].计算机技术与发展,2017,27(09):161-165.
 LIU Ling-yun[],XU Shao-hua[][]. Pattern Recognition of Sedimentary Microfacies with Fuzzy Inference Process Neural Network[J].,2017,27(09):161-165.
点击复制

 基于模糊推理过程神经网络的沉积微相判别()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年09期
页码:
161-165
栏目:
应用开发研究
出版日期:
2017-09-10

文章信息/Info

Title:
 Pattern Recognition of Sedimentary Microfacies with Fuzzy Inference Process Neural Network
文章编号:
1673-629X(2017)09-0161-05
作者:
 刘凌云[1]许少华[1][2]
 1.东北石油大学 计算机与信息技术学院;2.山东科技大学 信息科学与工程学院
Author(s):
 LIU Ling-yun[1]XU Shao-hua[1][2]
关键词:
 模糊推理过程神经网络学习算法沉积微相判别
Keywords:
 fuzzy reasoningprocess neural networklearning algorithmsedimentary microfacies discrimination
分类号:
TP301
文献标志码:
A
摘要:
 迄今,现有的油田进行沉积微相模式识别时大多选取测井曲线的静态定量数据,其难以反映测井相的深度累积效应对沉积微相模式识别的影响.针对上述不足,选取测井曲线中可处理的定量与定性混合过程信息,构建并提出了模糊推理和过程神经网络相结合的判别模型,以实现沉积微相的判别.该模型基于模糊集理论对测井相的定性信息进行定量处理,以简化判别规则,并提取有效的判别数据,从而提高沉积微相判别的精度;根据测井相数据随深度变化的特征曲线,采用过程神经网络的过程式输入优势,通过不断优化过程神经网络的学习机制来提高沉积微相判别的准确度.实验结果表明,基于模糊推理过程神经网络模型的沉积微相模式识别方法精度高、速度快,是一种比较实用的沉积微相识别方法.
Abstract:
 So far,the static quantitative data of well logging curves have been mostly used to identify the sedimentary microfacies in the existing oil fields,which is difficult to reflect the influence of logging depth accumulation on pattern recognition of sedimentary microfa-cies. Taken into the above shortcomings account,a discriminant model combining fuzzy inference and process neural network is estab-lished and proposed to realize the judgment of sedimentary microfacies,on the basis of selection of information on quantitative and quali-tative mixing process in the logging curve,which has been quantitatively processed to simplify the discriminant rule and extract the valid discriminant data so as to improve the accuracy of the sedimentary microfacies discrimination. Considered that the logging data is charac-teristic of the curve with depth the advantage in process input of the process neural network is introduced and then accuracy of sedimenta-ry microfacies discrimination by continuously optimizing the learning mechanism of process neural networks is improved. The experimen-tal results show that it has high accuracy and high rate,which is a practical method for the identification of sedimentary microfacies.

相似文献/References:

[1]王睿 杜静 何玉林 杨显刚.一种模糊知识库系统及其推理机制研究[J].计算机技术与发展,2007,(03):112.
 WANG Rui,DU Jing,HE Yu-lin,et al.Study of Fuzzy Knowledge- Based System and Fuzzy Inference Machine[J].,2007,(09):112.
[2]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(09):1.
[3]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(09):5.
[4]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(09):13.
[5]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(09):21.
[6]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(09):25.
[7]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(09):29.
[8]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(09):34.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(09):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(09):47.
[11]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(09):38.
[12]张方舟,张媛媛,金宗泽,等. 基于NNFR神经模糊推理的储层参数识别与评价[J].计算机技术与发展,2015,25(06):211.
 ZHANG Fang-zhou,ZHANG Yuan-yuan,JIN Zong-ze,et al. Fuzzy Inference Reservoir Parameter Identification and Evaluation Based on NNFR[J].,2015,25(09):211.
[13]张娇[],赵颖[].融合案例与模糊推理的供水管网事故检测[J].计算机技术与发展,2016,26(01):167.
 ZHANG Jiao[],ZHAO Ying[]. Incident Detection for Water Supply Network Based on Case-based Reasoning and Fuzzy-based Reasoning[J].,2016,26(09):167.

更新日期/Last Update: 2017-10-25